# Novel Non-nucleoside Inhibitors of Human Immunodeficiency Virus Type 1 (HIV-1) Reverse Transcriptase. 4.<sup>1</sup> 2-Substituted Dipyridodiazepinones as Potent Inhibitors of Both Wild-Type and Cysteine-181 HIV-1 Reverse Transcriptase Enzymes

John R. Proudfoot,\* Karl D. Hargrave, Suresh R. Kapadia, Usha R. Patel, Karl G. Grozinger, Daniel W. McNeil, Ernest Cullen, Mario Cardozo, Liang Tong, Terence A. Kelly, Janice Rose, Eva David, Scott C. Mauldin, Victor U. Fuchs, Jana Vitous, MaryAnn Hoermann, Janice M. Klunder, Palayakotai Raghavan, Jerry W. Skiles, Philip Mui, Douglas D. Richman,<sup>†</sup> John L. Sullivan,<sup>‡</sup> Cheng-Kon Shih, Peter M. Grob, and Julian Adams

Research and Development, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877, Departments of Pathology and Medicine, University of California, and Veterans Affairs Medical Center, San Diego, California 92161, and Department of Pediatrics and Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605

Received June 26, 1995<sup>®</sup>

The major cause of viral resistance to the potent human immunodeficiency virus type 1 reverse transcriptase (RT) inhibitor nevirapine is the mutation substituting cysteine for tyrosine-181 in RT (Y181C RT). An evaluation, against Y181C RT, of previously described analogs of nevirapine revealed that the 2-chlorodipyridodiazepinone **16** is an effective inhibitor of this mutant enzyme. The detailed examination of the structure-activity relationship of 2-substituted dipyridodiazepinones presented below shows that combined activity against the wild-type and Y181C enzymes is achieved with aryl substituents at the 2-position of the tricyclic ring system. In addition, the substitution pattern at C-4, N-5, and N-11 of the dipyridodiazepinone ring system optimum for inhibition of both wild-type and Y181C RT is no longer the 4-methyl-11-cyclopropyl substitution preferred against the wild-type enzyme but rather the 5-methyl-11-ethyl (or 11-cyclopropyl) pattern. The more potent 2-substituted dipyridodiazepinones were evaluated against mutant RT enzymes (L100I RT, K103N RT, P236L RT, and E138K RT) that confer resistance to other non-nucleoside RT inhibitors, and compounds **42**, **62**, and **67**, with pyrrolyl, aminophenyl, and aminopyridyl substituents, respectively, at the 2-position, were found to be effective inhibitors of these mutant enzymes also.

## Introduction

The only agents currently approved for the treatment of the acquired immune deficiency syndrome (AIDS) exert their therapeutic effect at the level of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) enzyme. These therapeutics, the nucleoside analogs AZT,<sup>2</sup> DDI,<sup>3</sup> DDC,<sup>4</sup> and D4T,<sup>5</sup> after intracellular transformation to the triphosphates, are incorporated by RT into the nascent proviral DNA and thereby terminate its synthesis.

In addition to the nucleoside analogs, there is a second class of RT inhibitors, the non-nucleosides, exemplified by the dipyridodiazepinone nevirapine (1).<sup>6</sup> The non-nucleoside RT inhibitors<sup>7-11</sup> bind close to the active site<sup>12-15</sup> inducing conformational changes that affect the catalytic efficiency of the enzyme.<sup>16,17</sup> Notwithstanding the differing mechanisms of action, the emergence of resistant virus is a major limitation associated with the use of either nucleoside or non-nucleoside inhibitors of RT.<sup>18-20</sup>

The primary cause of viral resistance to nevirapine is the mutation which substitutes cysteine for tyrosine-181 in RT (Y181C RT).<sup>19</sup> This Y181C RT is less sensitive to nevirapine than the wild-type enzyme (Table 1) and also less sensitive to other non-nucleoside inhibitors.<sup>20</sup> Besides improving potency against the



wild-type enzyme, a major focus of the study presented below was to achieve significant activity against the Y181C RT. Of the previously reported dipyridodiazepinones,<sup>21</sup> only the 2-chloro derivative **16** displayed significant inhibition of the Y181C RT (IC<sub>50</sub> = 0.21  $\mu$ M, Table 1). This unique activity of the 2-chlorodipyridodiazepinone prompted us to extend the original structure-activity relationship (SAR) study and examine in detail the effect of 2-substitution on the inhibition of wild-type and Y181C RT enzymes.

# Chemistry

The optimal dipyridodiazepinone substituents at N-11 (ethyl or cyclopropyl), C-4 (methyl or hydrogen), and N-5 (hydrogen or methyl) have been previously determined,<sup>21</sup> and the effect of 2-substitution was evaluated in the context of the tricyclic nucleus A (4-methyl-11-cyclopropyl), B (4-methyl-11-ethyl), C (5-methyl-11-ethyl), or D (5-methyl-11-cyclopropyl) below. The general synthesis of 2-substituted-4-methyldipyridodiazepinones (derivatives of nuclei A and B) is outlined in Scheme 1. The reaction with POCl<sub>3</sub> of pyridones  $I^{22}$  gave the 3-cyano-2-chloropyridines II. Conversion of the

© 1995 American Chemical Society

<sup>&</sup>lt;sup>†</sup> University of California and Veterans Affairs Medical Center. <sup>‡</sup> University of Massachusetts Medical School.

<sup>\*</sup> Abstract published in Advance ACS Abstracts, October 15, 1995.



nitrile to the amide with hot concentrated sulfuric  $acid^{23}$  was followed by Hofmann rearrangement which gave the 3-amino-2-chloropyridines **IV**. Derivatives of nucleus A were obtained by reaction of amides **V** with cyclopropylamine followed by cyclization as previously described.<sup>21,24</sup> Derivatives of nucleus B were obtained by an analogous sequence employing ethylamine in the conversion of **V** to **VI**. The 2-alkyl and 2-halo derivatives of A and B were obtained in this way.

Several of the dipyridodiazepinones were derived by further transformation of the tricyclics VII. Displacement of the 2-chloro substituent of 15 gave the 2-amino and 2-mercapto derivatives of B. The 2-fluorodipyridodiazepinone 13 was derived from the corresponding 2-amino compound by diazotization in the presence of HF/pyridine.<sup>25</sup>

The 2-triflate derivatives **78** and **79** (Scheme 2) proved to be versatile intermediates for accessing derivatives

### Scheme 1<sup>a</sup>



<sup>a</sup> (a) POCl<sub>3</sub>, 120 °C; (b) concentrated  $H_2SO_4$ , heat; (c) NaOH, Br<sub>2</sub>, heat; (d) 2-chloronicotinoyl chloride, inert solvent; (e) RNH<sub>2</sub>, inert solvent, sealed tube, heat; (f) NaH, inert solvent, heat; (g) MeSNa, sulfolane, heat; (h) amine, sealed tube, heat.

Scheme 2<sup>a</sup>



 $^a$  (a) Br<sub>2</sub>, AcOH, NaOAc; (b) 2-chloronicotinoyl chloride, CH<sub>2</sub>Cl<sub>2</sub>, pyridine; (c) NaH, DMSO, MeI; (d) EtNH<sub>2</sub> or cyclopropylamine, inert solvent, sealed tube, 150 °C; (e) NaH, xylene, 150 °C; (f) HBr/AcOH, reflux; (g) Tf<sub>2</sub>O, <sup>i</sup>Pr<sub>2</sub>NEt<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>; (h) NaHMDS, pyridine, 95 °C; (i) KO<sup>t</sup>Bu, DMSO, MeI.

of nuclei C and D. Bromination of 3-amino-6-methoxypyridine (69) occurred selectively at the 2-position giving 3-amino-2-bromo-6-methoxypyridine (70) which was reacted with 2-chloronicotinoyl chloride to give the amide 73. N-Methylation was followed by reaction with ethylamine or cyclopropylamine, and subsequent cyclization gave the 2-methoxydipyridodiazepinone 36 or 37. Cleavage of the methyl ether and reaction of the 2-hydroxypyridine with triflic anhydride gave the 2-triflate 78 or 79. The triflate group was readily displaced by amines giving the 2-amino derivatives of C and D. The 2-N-pyrrolyl derivative 33 and the 2-N-pyrazolyl derivative 34 were derived from the corresponding 2-amino and 2-hydrazino compounds by standard transformations.<sup>26,27</sup>

In addition, the triflates were precursors of the 2-alkenyl-, 2-alkynyl-, 2-aryl-, and 2-heteroaryl-substi-

Table 1. Inhibition of HIV-1 Wild-Type RT and HIV-1 Y181C RT by Dipyridodiazepinones

| no.         R         nucleus         mp(°C)         aslama         formulat         WTET         Y181C ET           1         H         A         247-248         EGAr. $c_{11}H_{11}N_{10}^{\circ}$ 0.04         2.6           4         CH_1         A         >200         EGArbasan $c_{11}H_{11}N_{10}^{\circ}$ 0.13         2.2           4         CH_1         A         >200         EGArbasan $c_{11}H_{11}N_{10}^{\circ}$ 0.03         2.1           5         CH_1         B         210-211         EGArbasan $c_{11}H_{11}N_{10}^{\circ}$ 0.032         1.1           6         CH_1         B         122-212         EGArbasan $c_{11}H_{11}N_{10}^{\circ}$ 0.12         1.2           7         CHCCH_1         B         122-125         EGArbasan $c_{11}H_{11}N_{10}^{\circ}$ 0.12         2.4           10         C-CHCOCH_1         C         128-126         CH_10N_{10}^{\circ}         0.12         2.4           12         C=CH         C         122-125         EGArbasan $c_{11}H_1N_{10}^{\circ}$ 0.12         0.4           12         C=CH         C         122-125         EGArbasan $c_{11}H_1N_{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                       |         | reervet                |                                         |                                                               |       | $\mathrm{IC}_{50}(\mu\mathbf{M})^b$ |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------|---------|------------------------|-----------------------------------------|---------------------------------------------------------------|-------|-------------------------------------|--|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | no.        | R                                                     | nucleus | mp (°C)                | solvent                                 | formula <sup>a</sup>                                          | WT RT | Y181C RT                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1          |                                                       |         | 947 940                |                                         |                                                               | 0.00  | 0.0                                 |  |
| a         H         c         140-132         EROACharam         CHII,NO         0.13         22           a         CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1          | H<br>H                                                | A<br>D  | 247 - 249              | CH CICH CI                              | $C_{15}H_{14}N_4O^2$                                          | 0.08  | 2.0                                 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2          | n<br>u                                                | Б<br>С  | 212 - 214<br>190 - 199 | EtOAc/beyene                            | $C_{14}H_{14}N_{4}O^{2}$                                      | 0.04  | 1.0                                 |  |
| 5         CH         B         210-211         ENCAMPRAN         Call, NO         0.02         > 1           6         CH         C         CH         NO         0.02         > 1           7         CH2(H)         B         188-190         e         Cull, NO         0.09         1.7           8         CH(CH)         B         248-280         EtOAchesane         Cull, NO         0.09         1.7           9         CCHCOML         C         138-185         EtOAchesane         Cull, NO         0.18         0.47           10         C-CHCOML         C         138-125-216         EtOAchesane         Cull, NO         0.18         0.42           13         FCH         B         245-216         EtOAchesane         Cull, NO         0.01         0.80           14         Cl         A         226-223         EtOAchesane         Cull, NO         0.01         0.80           15         Cl         D         222-223         EtOAchesane         Cull, NO         0.09         0.92           16         Cl         D         220-221         EtOAchesane         Cull, NO         0.39         >1           17         D         22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3<br>4     | CH                                                    | Ă       | >300                   | EtOAc/hexane                            | $C_{1e}H_{1e}N_4O^d$                                          | 0.10  | 12                                  |  |
| 6         CH3         C         12         12           7         CH3         CH4         B         188-190         c         CH4         NO         0.12         1.2           8         CH4         B         212-214         BOAchesane         C $\mu_{Ha}NO$ 1         >1           10         C-CH4OCH <sub>4</sub> C         132-12         BOAchesane         C $\mu_{Ha}NO$ 1         >1           10         C-CH4OCH <sub>4</sub> C         132-14         BOAchesane         C $\mu_{Ha}NO$ 0.18         0.67           11         C<-CHCOCH <sub>4</sub> C         132-14         BOAchesane         C $\mu_{Ha}NO$ 0.12         2.4           12         C         CH4         BOAchesane         C $\mu_{Ha}NO$ 0.12         0.66           13         C         C         122-21         BOAchesane         C $\mu_{Ha}NO$ 0.03         2.1           14         B         222-221         BOAchesane         C $\mu_{Ha}NO$ 0.03         2.1           13         B         B         230-221         BOAchesane         C $\mu_{Ha}NO$ 0.03         2.1           14         NHC         D         222-221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5          | CH <sub>2</sub>                                       | B       | 210-211                | EtOAc/hexane                            | C1EH1EN4O                                                     | 0.02  | >1                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6          | CH <sub>2</sub>                                       | č       | 124 - 126              | hexane                                  | C15H16N4O                                                     | 0.12  | 1.2                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7          | CH <sub>2</sub> CH <sub>3</sub>                       | B       | 188-190                | е                                       | $C_{16}H_{18}N_4O$                                            | 0.09  | 1.7                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8          | $CH(CH_3)_2$                                          | В       | 212 - 214              | EtOAc/hexane                            | $C_{17}H_{20}N_4O$                                            | 1     | >1                                  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9          | $C(CH_3)_3$                                           | в       | 248 - 250              | EtOAc/hexane                            | $C_{18}H_{22}N_4O$                                            | >1    | >1                                  |  |
| $ \begin{array}{cccc} C=CHCONFs_{2} & C & 122-125 & ElOAcheane & C,HI,NO,0 & 25H,O' & 0.25 & 2.4 \\ C & C & 144-12F & ElOAcheane & C,HI,NO,0 & 25H,O' & 0.44 & 0.42 \\ F & B & 215-216 & CH(CN & C,HI,GIN,O & 0.02 & 0.85 \\ C & C & A & 228-228 & CH,CI/NEARE & C,HI,GIN,O & 0.01 & 0.80 \\ C & C & 125-126 & CH(CN & C,HI,GIN,O & 0.01 & 0.80 \\ C & C & 125-126 & CH(CN & C,HI,GIN,O & 0.09 & 0.22 \\ P & C & C & 125-126 & CH(CN & C,HI,GIN,O & 0.09 & 0.22 \\ P & C & C & 125-126 & CH(CN & C,HI,GIN,O & 0.09 & 0.22 \\ P & C & C & 125-126 & CH(CN & C,HI,GIN,O & 0.09 & 0.22 \\ P & C & C & 125-126 & EOAcheane & C,HI,GIN,O & 0.09 & 0.22 \\ P & C & C & 125-126 & EOAcheane & C,HI,GIN,O & 0.09 & 0.22 \\ P & C & C & 154-157 & Pro/Oheane & C,HI,GIN,O & 0.28 & 0.1 \\ 20 & NHCH,GI,CH,CH & B & 185-186 & EOAcheane & C,HI,GNO & 0.28 & 0.1 \\ 21 & NHCH,CH,CH & B & 185-186 & EOAcheane & C,HI,GNO & 0.281H_O & 0.98 & > 1 \\ 23 & NHCH,CH,CH & B & 185-186 & EOAcheane & C,HI,GNO & 0.281H_O & 0.98 & > 1 \\ 24 & NHCH,CH,CH & B & 139-142 & EOAcheane & C,HI,GNO & 0.281H_O & 0.09 & > 1 \\ 24 & NHCH,CH,CH,OH & B & 139-142 & EOAcheane & C,HI,GNO & 0.01 & > 1 \\ 25 & NC(H_{3} & C & 118-120 & EOAcheane & C,HI,GNO & 0.01 & > 1 \\ 26 & NC(H_{3} & CH,OH) & B & 131-136 & CHC(L)^{P}Pro & C,HI,GNO & 0.04 & > 1 \\ 26 & N,GIR,Shydroxypyroldinyl & C & 185-186 & EOAcheane & C,HI,GNO & 0.04 & > 1 \\ 26 & N,GIR,Shydroxypyroldinyl & C & 187-166 & EOAcheane & C,HI,GNO & 0.04 & > 1 \\ 26 & N,GIR,Shydroxypyroldinyl & C & 185-186 & EOAcheane & C,HI,GNO & 0.04 & > 1 \\ 27 & Neyprolyl & C & 186-188 & EOACheane & C,HI,GNO & 0.04 & > 1 \\ 28 & N,GIR,Shydroxypyroldinyl & C & 185-186 & EOAcheane & C,HI,GNO & 0.04 & > 1 \\ 27 & Neyprolyl & C & 186-188 & EOAcheane & C,HI,GNO & 0.04 & > 1 \\ 28 & NOTAR,Shydroxypyroldinyl & C & 185-186 & EOAcheane & C,HI,GNO & 0.04 & > 1 \\ 28 & NOTAR,Shydroxypyroldinyl & C & 185-186 & EOAcheane & C,HI,GNO & 0.04 & > 1 \\ 28 & NOTAR,Shydroxypyroldinyl & C & 185-186 & EOAcheane & C,HI,GNO & 0.04 & > 1 \\ 28 & NOTAR,Shydroxypyroldinyl & C & 185-168 & EOAcheane & C,HI,GNO & 0.04 & > 1 \\ 28$ | 10         | C=CHCOOCH <sub>3</sub>                                | С       | 138-139                | EtOAc/hexane                            | $C_{18}H_{18}N_4O_3$                                          | 0.18  | 0.67                                |  |
| $      12 C=CH C=CH C 144-147 EtOAchesane C, cH_4N(-0.25H_2O) 0.14 0.42 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11         | $C=CHCONH_2$                                          | С       | 122 - 125              | EtOAc/hexane                            | $C_{17}H_{17}N_5O_2$                                          | 0.25  | 2.4                                 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12         | C≡CH                                                  | C       | 144 - 147              | EtOAc/hexane                            | $C_{16}H_{14}N_4O \cdot 0.25H_2O'$                            | 0.14  | 0.42                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13         | F                                                     | в       | 215 - 216              | CH <sub>3</sub> CN                      | $C_{14}H_{13}FN_4O$                                           | 0.02  | 0.85                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14         |                                                       | A       | 295-300                | AcOH/H <sub>2</sub> O                   | $C_{15}H_{13}CIN_4O$                                          | 0.02  | 0.78                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>10   |                                                       | Б       | 224-228                | CH <sub>2</sub> Cl <sub>2</sub> /nexane | $C_{14}H_{13}CIN_4O$                                          | 0.01  | 0.80                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17         |                                                       | n       | 220-221                | FtOAc/bevene                            | CurHuclNLO                                                    | 0.08  | 0.21                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18         | Br                                                    | D<br>D  | 220-221                | EtOAc/CH <sub>a</sub> Cl <sub>a</sub>   | C <sub>1</sub> -H <sub>10</sub> BrN <sub>4</sub> O            | 0.03  | 0.52                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19         | NH <sub>2</sub>                                       | č       | 197-199                | EtOAc/ <sup>i</sup> Pr <sub>2</sub> O   | C14H15N5O                                                     | >1    | >1                                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20         | NHCH <sub>3</sub>                                     | č       | 186 - 189              | EtOAc/ <sup>i</sup> Pr <sub>2</sub> O   | $C_{15}H_{17}N_5O\cdot0.1H_9O$                                | 0.19  | 0.71                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21         | NHC <sub>2</sub> H <sub>5</sub>                       | č       | 154 - 157              | <sup>i</sup> Pr <sub>2</sub> O/hexane   | $C_{16}H_{19}N_5O$                                            | 0.23  | 1.3                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22         | $NHCH = CH_2CH_2$                                     | С       | 167 - 170              | EtOAc/hexane                            | C <sub>17</sub> H <sub>19</sub> N <sub>5</sub> O              | 0.39  | >1                                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23         | NHCH <sub>2</sub> CH <sub>2</sub> OH                  | В       | 241 - 244              | CHCl <sub>3</sub> /EtOH                 | $C_{16}H_{19}N_5O_2 \cdot 0.25H_2O$                           | 0.09  | >1                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>24</b>  | NHCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH  | В       | 185 - 186              | EtOAc/EtOH                              | $C_{17}H_{21}N_5O_2 \cdot 0.25H_2O$                           | 0.09  | >1                                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>25</b>  | $N(CH_3)_2$                                           | С       | 118 - 120              | EtOAc/EtOH                              | $C_{16}H_{19}N_5O$                                            | 0.07  | 0.77                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26         | N(CH <sub>3</sub> )CH <sub>2</sub> CH <sub>2</sub> OH | B       | 139 - 142              | EtOAc/ <sup>i</sup> Pr <sub>2</sub> O   | $C_{17}H_{21}N_5O_2$                                          | 0.01  | >1                                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27         | N-pyrrolidinyl                                        | C       | 185-188                | EtOH/DMF                                | $C_{18}H_{21}N_5O \cdot 0.5H_2O$                              | 0.02  | 3.8                                 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28         | N-3,4-didehydropyrrolidinyl                           | C       | 153 - 156              | CHCl <sub>3</sub> /Pr <sub>2</sub> O    | $C_{18}H_{19}N_5O$                                            | 0.03  | 0.64                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29         | N-(3(R,S)-nydroxypyrrolldinyl)                        | В       | 131 - 134              | CHCl <sub>3</sub> /nexane               | $C_{18}H_{21}N_5O_2$                                          | 0.04  | >1                                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30<br>91   | N-piperiuliyi                                         | Č       | 164 - 160<br>157 - 160 | iProO/hevene                            | $C_{19}H_{23}N_5O$                                            | 0.30  | >1                                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32         | $N_{\rm r}$                                           | B       | 221 - 223              | <sup>i</sup> Pr <sub>2</sub> O/hexane   | $C_{18}H_{21}N_5O_2$                                          | 0.40  | >1                                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33         | N-nyrrolyl                                            | č       | 180 - 182              | EtOAc/hexane                            | $C_{18}H_{17}N_{r}O$                                          | 0.09  | 0.21                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34         | N-pyrazolyl                                           | č       | 145 - 147              | <sup>i</sup> Pr <sub>2</sub> O          | $C_{17}H_{16}N_{6}O$                                          | 0.31  | 0.56                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35         | OH                                                    | č       | 215 - 218              | EtOAc                                   | $C_{14}H_{14}N_4O_2$                                          | 0.47  | >1                                  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36         | OCH <sub>3</sub>                                      | Ċ       | 116-118                | EtOAc/hexane                            | $C_{15}H_{16}N_4O_2$                                          | 0.04  | 0.60                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37         | OCH <sub>3</sub>                                      | D       | 161 - 164              | heptane                                 | $C_{16}H_{16}N_4O_2$                                          | 0.12  | 1.1                                 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38         | $SCH_3$                                               | в       | 235 - 236              | EtOH                                    | $C_{15}H_{16}N_4OS$                                           | 0.02  | >1                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>39</b>  | 2-furanyl                                             | C       | foam                   | е                                       | $C_{18}H_{16}N_4O_2$                                          | 0.11  | 0.16                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40         | 3-furanyl                                             | c       | foam                   | e                                       | $C_{18}H_{16}N_4O_2^n$                                        | 0.04  | 0.11                                |  |
| 423-pyrrolylC $173-174$ $CH_2(y)$ exame $C_{18}H_{17}N_5O^{-0.5H_2O}$ $0.03$ $0.04$ 433-pyrrolylD $254-255$ EtOAc $C_{18}H_{17}N_5O^{-0.5H_2O}$ $0.05$ $0.06$ 442-thiarolylC $112-114$ EtOA/hexame $C_{18}H_{18}N_4OS$ $0.14$ $0.42$ 453-thiarolylC $112-114$ EtOA/hexame $C_{18}H_{18}N_4OS$ $0.14$ $0.42$ 462-thiarolylC $114-115$ $e$ $C_{17}H_{18}N_5OS$ $0.38$ $1.1$ 475-thiarolylC $160-162$ EtOA/hexame $C_{17}H_{18}N_5O_2$ $0.12$ $0.88$ 495-oxarolylC $168-159$ EtOA/hexame $C_{17}H_{18}N_5O_2$ $0.22$ $0.82$ 502-imidarolylC $158-159$ EtOA/hexame $C_{17}H_{18}N_5O_2$ $0.12$ $0.82$ 502-imidarolylC $177-180$ EtOA/hexame $C_{17}H_{18}N_6O_2$ $0.22$ $0.82$ 515-imidarolylC $177-180$ EtOA/hexame $C_{17}H_{18}N_6O_2$ $0.22$ $0.82$ 534-pyrarolylD $233-235$ CH_3CN $C_{18}H_{18}N_4O_2$ $0.06$ $0.05$ 55phenylC $113-114$ EtOA/Pr2O $C_{21}H_{20}N_4O_2^h$ $0.82$ $2.5$ 57 $3-OCH_3-phenyl$ C $125-127$ $Pr_2O$ $C_{21}H_{20}N_4O_2^h$ $0.82$ $2.5$ 57 $3-OH_3-phenyl$ C $125-127$ $Pr_2O$ $C_{21}H_{20}N_4O_2^h$ $0.82$ <t< th=""><td>41</td><td>2-pyrrolyl</td><td>C</td><td>foam</td><td>e<br/>OTLOLA</td><td><math>C_{18}H_{17}N_5O \cdot 0.5H_2O^2</math></td><td>0.07</td><td>0.07</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41         | 2-pyrrolyl                                            | C       | foam                   | e<br>OTLOLA                             | $C_{18}H_{17}N_5O \cdot 0.5H_2O^2$                            | 0.07  | 0.07                                |  |
| 433-pyrrolylD $234-235$ $Clock$ $C_{13}H_1/N_5O^+$ $0.035$ $0.064$ 442-thianylC $112-114$ $EtOH/H_5O$ $C_{18}H_{16}N_4OS$ $0.14$ $0.42$ 453-thienylC $112-114$ $EtOH/H_5O$ $C_{18}H_{16}N_4OS$ $0.10$ $0.30$ 462-thiazolylC $140-115$ $e$ $C_{17}H_{15}N_5OS$ $0.38$ $1.1$ 475-thiazolylC $160-162$ $EtOAc/hexane$ $C_{17}H_{16}N_5OS$ $0.38$ $1.1$ 482-oxazolylC $160-162$ $EtOAc/hexane$ $C_{17}H_{16}N_5O_2$ $0.10$ $0.24$ 495-oxazolylC $160-162$ $EtOAc/hexane$ $C_{17}H_{16}N_5O_2$ $0.11$ $0.56$ 495-oxazolylC $177-180$ $EtOAc$ $C_{17}H_{16}N_5O_2$ $0.12$ $0.82$ 502-imidazolylC $177-180$ $EtOAc$ $C_{17}H_{16}N_6O^+0.5H_2O^+0^-0.13$ $0.19$ 523-pyrazolylC $194-196$ $EtOAc^{4}P_{12}O$ $C_{17}H_{16}N_6O^+0.5H_2O^+0^-0.39$ $0.29$ 534-pyrazolylD $233-235$ $CH_3CN^-C_{17}C_{18}N_6O^+0.5H_2O^+0^-0.02^+0.05$ $0.02$ $0.06$ 544-pyrazolylD $233-235$ $CH_3CN^-C_{17}C_{18}C_{18}N_6O^+0.5H_2O^+0^-0.02^+0.05$ $0.02$ $0.66$ 544-pyrazolylC $125-127$ $iP_{10}O^-C_{21}H_{20}N_{10}Q^+0^+0.04^+0.02^+0^+0^+0^+0^+0^+0^+0^+0^+0^+0^+0^+0^+0^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42         | 3-pyrrolyl                                            | C<br>D  | 173-174                | $CH_2CI_2/nexame$                       | $C_{18}H_{17}N_5O \cdot 0.5H_2O$                              | 0.03  | 0.04                                |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40<br>11   | 3-pyrrolyl                                            | C       | 204 - 200<br>119 - 114 | ELOAC                                   | CigHigNLOS                                                    | 0.05  | 0.00                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44         | 2-thienyl                                             | č       | 112 - 114<br>160 - 162 | EtOM/1120                               | C18H16N4OS                                                    | 0.14  | 0.42                                |  |
| 475-thiazolylCformeC_17H_{15}N_5OS-0.5EtOAc0.100.24482-oxazolylC160-162EtOAc/hexaneC_17H_{15}N_5O_20.110.56495-oxazolylC158-159EtOAc/hexaneC_17H_{15}N_5O_20.220.82502-imidazolylC270-274EtOAc/hexaneC_17H_{16}N_6O3.70.74515-imidazolylC270-274EtOAcC_17H_{16}N_6O3.70.74523-pyrazolylC177-180EtOAcC_17H_{16}N_6O0.5H_2O0.130.19534-pyrazolylC194-196EtOAc/Pr2OC_17H_{16}N_6O0.020.060.05544-pyrazolylD233-235CH_3CNC_18H_{16}N_6O0.020.060.0555phenylCoileC_20H_{18}N_4O0.231.4562-OCH3-phenylC125-127Pr2OC_21H_{20}N_4O_2^h0.822.5573-OCH3-phenylC113-114EtOAc/Pr2OC_20H_{18}N_4O_20.100.18593-NH2-phenylC155-157EtOAc/Pr2OC_20H_{18}N_4O_20.070.56604-OCH3-phenylC126-128Pr2OC_20H_{18}N_4O_20.070.56614-OH-phenylC215-216EtOAc/Pr2OC_20H_{18}N_6O0.070.56632-pyridylD126-128iPr2OC_20H_{18}N_6O0.070.5664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46         | 2-thiazolyl                                           | č       | 114 - 115              | e                                       | C17H15N5OS                                                    | 0.38  | 1.1                                 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47         | 5-thiazolyl                                           | č       | foam                   | e                                       | C <sub>17</sub> H <sub>15</sub> N <sub>5</sub> OS·0.5EtOAc    | 0.10  | 0.24                                |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48         | 2-oxazolyl                                            | С       | 160 - 162              | EtOAc/hexane                            | $C_{17}H_{15}N_5O_2$                                          | 0.11  | 0.56                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>49</b>  | 5-oxazolyl                                            | С       | 158 - 159              | EtOAc/hexane                            | $C_{17}H_{15}N_5O_2$                                          | 0.22  | 0.82                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50         | 2-imidazolyl                                          | C       | 270 - 274              | EtOAc                                   | $C_{17}H_{16}N_{6}O$                                          | 3.7   | 0.74                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51         | 5-imidazolyl                                          | C       | 177 - 180              | EtOAc                                   | $C_{17}H_{16}N_6O \cdot 0.5H_2O$                              | 0.13  | 0.19                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52         | 3-pyrazolyl                                           | C       | foam                   | e<br>Di O L (D) O                       | $C_{17}H_{16}N_6O \cdot 0.5H_2O'$                             | 0.39  | 0.29                                |  |
| 544-pyrazoly1D $233-235$ $CH_3CN$ $C_{18H_16}N_6O^{-0.5H_2O}$ $0.06$ $0.05$ 55phenylC $01l$ $e$ $C_{20}H_{18}N_4O$ $0.23$ $1.4$ 562-OCH <sub>3</sub> -phenylC $125-127$ $Pr_2O$ $C_{21}H_{20}N_4O_2^h$ $0.82$ $2.5$ 57 $3-OCH_3$ -phenylC $113-114$ $EtOAc'^Pr_2O$ $C_{21}H_{20}N_4O_2$ $0.15$ $0.21$ 58 $3-OH_2$ -phenylC $205-206$ $EtOAc'^Pr_2O$ $C_{20}H_{18}N_4O_2$ $0.10$ $0.18$ 59 $3-NH_2$ -phenylC $155-157$ $EtOAc'^Pr_2O$ $C_{20}H_{18}N_4O_2$ $0.07$ $0.56$ 60 $4-OCH_3$ -phenylC $126-128$ $Pr_2O$ $C_{21}H_{20}N_4O_2^h$ $1.4$ $3.2$ 61 $4-OH_2$ -phenylC $215-216$ $EtOAc'Pr_2O$ $C_{20}H_{18}N_4O_2$ $0.07$ $0.27$ 62 $4-NH_2$ -phenylC $192-194$ $CH_3CN/H_2O$ $C_{20}H_{19}N_5O$ $0.04$ $0.12$ 63 $2-pyridyl$ C $168-169$ $EtOAc/hexane$ $C_{19}H_{17}N_5O^{-}0.1H_2O$ $0.18$ $1.6$ 64 $3$ -pyridylD $196-198$ $EtOAc/hexane$ $C_{20}H_{19}N_5O_2$ $1.2$ $3$ 65 $3\cdot(6-OCH_3-pyridyl)$ C $128-130$ $EtOAc/hexane$ $C_{19}H_{17}N_5O^{-}1.5H_2O'$ $1.1$ $>1$ 67 $3\cdot(6-NH_2-pyridyl)$ C $213-216$ $EtOAc/hexane$ $C_{20}H_{19}N_5O^{-}0.75H_2O'$ $0.15$ $0.32$ 68 $4$ -pyridylD $176-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53         | 4-pyrazolyl                                           | C       | 194-196                | EtUAc/Pr <sub>2</sub> O                 | $C_{17}H_{16}N_6O$                                            | 0.02  | 0.06                                |  |
| 55phenylCoff $e$ $C_{20}T_{13}N_4O$ $0.23$ $1.4$ 562-OCH <sub>3</sub> -phenylC $125-127$ $\Pr_2O$ $C_{21}H_{20}N_4O_2^h$ $0.82$ $2.5$ 573-OCH <sub>3</sub> -phenylC $113-114$ EtOAc/ $\Pr_2O$ $C_{21}H_{20}N_4O_2$ $0.15$ $0.21$ 58 $3-OH_phenyl$ C $205-206$ EtOAc/ $\Pr_2O$ $C_{20}H_{18}N_4O_2$ $0.10$ $0.18$ 59 $3-NH_2$ -phenylC $155-157$ EtOAc/ $\Pr_2O$ $C_{20}H_{18}N_4O_2$ $0.07$ $0.56$ 60 $4-OCH_3$ -phenylC $126-128$ $\Pr_2O$ $C_{21}H_{20}N_4O_2^h$ $1.4$ $3.2$ 61 $4-OH_phenyl$ C $215-216$ EtOAc/ $\Pr_2O$ $C_{20}H_{18}N_4O_2$ $0.07$ $0.56$ 60 $4-OCH_3$ -phenylC $126-128$ $\Pr_2O$ $C_{21}H_{20}N_4O_2^h$ $1.4$ $3.2$ 61 $4-OH_phenyl$ C $126-128$ $\Pr_2O$ $C_{20}H_{18}N_4O_2$ $0.07$ $0.56$ 60 $4-OCH_3$ -phenylC $126-128$ $\Pr_2O$ $C_{20}H_{18}N_4O_2$ $0.07$ $0.27$ 62 $4-NH_2$ -phenylC $192-194$ $CH_3CN/H_2O$ $C_{20}H_{18}N_4O_2$ $0.07$ $0.27$ 63 $2-pyridyl$ D $196-198$ EtOAc/hexane $C_{19}H_{17}N_5O$ $0.18$ $1.6$ 64 $3$ -pyridylD $196-198$ EtOAc/hexane $C_{20}H_{19}N_5O$ $0.18$ $0.44$ 65 $3\cdot(6-OH_3$ -pyridyl)C $128-130$ $EtOAc/Pr_2O$ $C_{20}H_{19}N_5O^2$ $1.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54<br>EE   | 4-pyrazolyl                                           | D       | 233-235                | CH <sub>3</sub> CN                      | $C_{18}H_{16}N_6O \cdot 0.5H_2O$                              | 0.06  | 0.05                                |  |
| 562-OCH3-phenylC $127$ $112^{O}$ $C_{21}H_{20}H_4O_2$ $0.52$ $2.5$ 573-OCH3-phenylC $113-114$ $EtOAc'Pr_2O$ $C_{21}H_{20}N_4O_2$ $0.15$ $0.21$ 583-OH-phenylC $205-206$ $EtOAc'Pr_2O$ $C_{20}H_{18}N_4O_2$ $0.10$ $0.18$ 593-NH_2-phenylC $155-157$ $EtOAc'Pr_2O$ $C_{20}H_{19}N_5O$ $0.07$ $0.56$ 604-OCH_3-phenylC $126-128$ $Pr_2O$ $C_{21}H_{20}N_4O_2^h$ $1.4$ $3.2$ 614-OH-phenylC $215-216$ $EtOH/hexane$ $C_{20}H_{19}N_5O$ $0.07$ $0.27$ 624-NH_2-phenylC $192-194$ $CH_3CN/H_2O$ $C_{20}H_{19}N_5O$ $0.04$ $0.12$ 632-pyridylC $168-169$ $EtOAc/hexane$ $C_{19}H_{17}N_5O\cdot0.1H_2O$ $0.18$ $1.6$ 643-pyridylD $196-198$ $EtOAc/hexane$ $C_{20}H_{19}N_5O_2$ $1.2$ $3$ 65 $3\cdot(6-OCH_3-pyridyl)$ C $128-130$ $EtOAc/hexane$ $C_{20}H_{19}N_5O_2$ $1.2$ $3$ 66 $3\cdot(6-OH_2-pyridyl)$ C $154-172$ $EtOAc/hexane$ $C_{19}H_{18}N_6O^k$ $0.05$ $0.26$ 68 $4$ -pyridylD $176-178$ $EtOAc/hexane$ $C_{20}H_{17}N_5O\cdot0.75H_2O^m$ $0.15$ $0.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00<br>50   | 2 OCH, phonyl                                         | Č       | 011                    | iProO                                   | $C_{20}H_{18}N_4O$                                            | 0.23  | 1.4                                 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57         | 3-OCH <sub>2</sub> -phenyl                            | č       | 113 - 114              | EtOAc/ <sup>i</sup> Pr <sub>o</sub> O   | $C_{21}H_{20}N_4O_2$                                          | 0.15  | 0.21                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58         | 3-OH-phenyl                                           | č       | 205-206                | EtOAc/ <sup>i</sup> Pr <sub>2</sub> O   | $C_{20}H_{18}N_4O_2$                                          | 0.10  | 0.18                                |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59         | 3-NH <sub>2</sub> -phenvl                             | č       | 155 - 157              | EtOAc/ <sup>i</sup> Pr <sub>2</sub> O   | $C_{20}H_{19}N_5O$                                            | 0.07  | 0.56                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60         | 4-OCH <sub>3</sub> -phenyl                            | Ċ       | 126 - 128              | <sup>i</sup> Pr <sub>2</sub> O          | $C_{21}H_{20}N_4O_2^h$                                        | 1.4   | 3.2                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>6</b> 1 | 4-OH-phenyl                                           | С       | 215 - 216              | EtOH/hexane                             | $C_{20}H_{18}N_4O_2$                                          | 0.07  | 0.27                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62         | 4-NH <sub>2</sub> -phenyl                             | C       | 192 - 194              | CH <sub>3</sub> CN/H <sub>2</sub> O     | $C_{20}H_{19}N_5O$                                            | 0.04  | 0.12                                |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63         | 2-pyridyl                                             | C       | 168-169                | EtOAc/hexane                            | $C_{19}H_{17}N_5O \cdot 0.1H_2O$                              | 0.18  | 1.6                                 |  |
| 66 $3-(6-OH-pyridyl)$ C $12O-130$ $EtOAC/Pr_2O$ $C_{20}H_{19}N_5O_2$ $1.2$ $3$ 66 $3-(6-OH-pyridyl)$ C $154-172$ $EtOAc/hexane$ $C_{19}H_{17}N_5O_2\cdot 1.5H_2O^l$ $1.1$ > 167 $3-(6-NH_2-pyridyl)$ C $213-216$ $EtOAc/Pr_2O$ $C_{19}H_{18}N_6O^k$ $0.05$ $0.26$ 68 $4-pyridyl$ D $176-178$ $EtOAc/hexane$ $C_{20}H_{17}N_5O\cdot 0.75H_2O^m$ $0.15$ $0.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64<br>GE   | 3-pyridyl                                             | D       | 196-198                | EtUAc/hexane                            | $C_{20}H_{17}N_5U$                                            | 0.18  | U.44                                |  |
| 673-(6-NH <sub>2</sub> -pyridyl)C $104 + 172$ EtoAc/nexate $C_{19117}N_5O_2 \cdot 1.5H_2O$ $1.1$ $>1$ 684-pyridylD $176-178$ EtoAc/hexane $C_{20}H_{17}N_5O \cdot 0.75H_2O^m$ $0.15$ $0.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>88   | o-(o-OOA3-pyriayi)<br>3-(6-OH-pyridyi)                | č       | 120-130<br>154-179     | ELUAC/Pr2U                              | $C_{20}\Pi_{19}N_5O_2$<br>$C_{10}H_{17}N_5O_{21}$ $5H_2O_1^2$ | 1.2   | ა<br>>1                             |  |
| <b>68</b> 4-pyridyl D 176-178 EtOAc/hexane $C_{20}H_{17}N_5O \cdot 0.75H_2O^m$ 0.15 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67         | 3-(6-NH2-pyridyl)                                     | č       | 213-216                | EtOAc/iProO                             | $C_{19} H_{19} N_{2} O^{k}$                                   | 0.05  | 0.26                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68         | 4-pyridyl                                             | Ď       | 176 - 178              | EtOAc/hexane                            | $C_{20}H_{17}N_5O \cdot 0.75H_2O^m$                           | 0.15  | 0.32                                |  |

<sup>a</sup> Analyses for C, H, and N are within  $\pm 0.4\%$  of theoretical values unless otherwise indicated. <sup>b</sup> For details, see ref 21. <sup>c</sup> Characterization of these compounds was previously described in ref 21. <sup>d</sup> N: calcd, 19.99; found, 19.49. <sup>e</sup> Purified by chromatography; no recrystallization necessary. <sup>f</sup> N: calcd, 19.81; found, 19.27. <sup>g</sup> N: calcd, 26.00; found, 25.13. <sup>h</sup> No elemental analysis available; characterized by NMR and mass spectroscopy. <sup>i</sup> N: calcd, 21.32; found, 19.26. <sup>j</sup> N: calcd, 25.52; found, 24.41. <sup>k</sup> N: calcd, 24.26; found, 23.19. <sup>l</sup> H: calcd, 5.38; found, 4.83. <sup>m</sup> N: calcd, 19.63; found, 18.93.

tuted tricyclics in Table 1 via Pd-catalyzed cross-coupling reactions.  $^{28}$  The 2-bromo tricyclic  ${\bf 18}$  was also

employed as a component in some cross-coupling reactions, and its synthesis is outlined in Scheme 2.

| Tab | le 2. | Reaction | Conditions : | for the | Synthesis | of 2-Al | kenyl-, 1 | 2-Alkynyl-, | , and 2-Ary | yldipyridod | iazepinones |
|-----|-------|----------|--------------|---------|-----------|---------|-----------|-------------|-------------|-------------|-------------|
|-----|-------|----------|--------------|---------|-----------|---------|-----------|-------------|-------------|-------------|-------------|

| product   | starter | coupling partner                                              | reaction conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yield<br>(%)    |
|-----------|---------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 10        | 78      | methyl acrylate                                               | $Et_3N, Pd(Ph_3P)_2Cl_2, 110 \ ^{\circ}C, 2 h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57              |
| 11        | 78      | acrylamide                                                    | $Et_3N$ , $Pd(Ph_3P)_2Cl_2$ , 120 °C, 4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44              |
| 12        | 78      | TMS acetylene                                                 | 1. Et <sub>3</sub> N, Pd(Ph <sub>3</sub> P) <sub>2</sub> Cl <sub>2</sub> , 90 °C, 2 h (86%), 2. TBAF, THF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $80^a$          |
| 39        | 78      | 2-(tributylstannyl)furan                                      | DMF, Pd(Ph <sub>3</sub> P) <sub>2</sub> Cl <sub>2</sub> , LiCl, 90 °C, 10 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56              |
| 40        | 78      | 3-(tributylstannyl)furan                                      | dioxane, Pd(Ph <sub>3</sub> P) <sub>4</sub> , LiCl, reflux, 30 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50              |
| 41        | 78      | N-Boc-2-(tributylstannyl)pyrrole                              | dioxane, Pd(Ph <sub>3</sub> P) <sub>4</sub> , LiCl, reflux, 4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23              |
| 42        | 78      | N- <sup>i</sup> Pr <sub>3</sub> Si-3-(tributylstannyl)pyrrole | 1. dioxane, Pd(Ph <sub>3</sub> P) <sub>4</sub> , LiCl, reflux, 3 h (71%), 2. TBAF, THF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $51^a$          |
| 43        | 79      | N- <sup>i</sup> Pr <sub>3</sub> Si-3-(tributylstannyl)pyrrole | 1. dioxane, Pd(Ph <sub>3</sub> P) <sub>4</sub> , LiCl, reflux, 3 h, 2. TBAF, THF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $78^{a}$        |
| 44        | 78      | 2-(tributylstannyl)thiophene                                  | DMF, Pd(Ph <sub>3</sub> P) <sub>4</sub> , LiCl, 90 °C, 1 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51              |
| 45        | 78      | 3-(tributylstannyl)thiophene                                  | NMP, $Pd(Ph_3P)_2Cl_2$ , LiCl, 90 °C, 4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35              |
| <b>46</b> | 78      | 2-thiazolylzinc chloride                                      | THF, $Pd(Ph_3P)_4$ , 80 °C, 3 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64              |
| 47        | 78      | 5-thiazolylzinc chloride                                      | DMF, Pd(Ph <sub>3</sub> P) <sub>2</sub> Cl <sub>2</sub> , 130 °C, 1.5 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28              |
| 48        | 78      | 2-oxazolylzinc chloride                                       | THF, $Pd(Ph_3P)_4$ , reflux, 5 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56              |
| <b>49</b> | 78      | oxazole                                                       | DMA, Pd(Ph <sub>3</sub> P) <sub>4</sub> , 120 °C, 30 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34              |
| 50        | 78      | [N-(N,N-dimethylsulfonamido)-2-                               | 1. THF, Pd(Ph <sub>3</sub> P) <sub>4</sub> , reflux, 1.5 h (70%), 2. KOH, EtOH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $22^a$          |
|           |         | imidazolyl]zinc chloride                                      | reflux, 1.5 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| 51        | 78      | [N-(N,N-dimethylsulfonamido)-5-<br>imidazolyl]zinc chloride   | 1. THF, Pd(Ph <sub>3</sub> P) <sub>4</sub> , reflux, 1.5 h (22%), 2. KOH, EtOH, reflux, 2 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $12^a$          |
| 52        | 78      | [1-(N,N-dimethylsulfonamido)-5-                               | 1. THF, Pd(Ph <sub>3</sub> P) <sub>4</sub> , reflux, 5.5 h (22%), 2. NH <sub>2</sub> NH <sub>2</sub> •H <sub>2</sub> O,<br>100 °C, 72 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 <sup>a</sup> |
| 53        | 78      | 4-(tributylstannyl)pyrazole                                   | DMF $Pd(Ph_2P)_2Cl_2$ 110 °C 4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39              |
| 54        | 78      | 4-(tributy)stannyl)pyrazole                                   | DMF $Pd(Ph_{2}P)_{0}Cl_{0}$ 110 °C 16 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28              |
| 55        | 78      | nhenvltributvlstannane                                        | DMF, $Pd(Ph_2P)_2Cl_2$ , $Plo(Cl_1, Plo(Ph_2P)_2Cl_2$ , $Plo(Cl_2, Plo(Ph_2P)_2Cl_2$ , $Plo(Ph_2P)_2Cl_2$ , | 42              |
| 56        | 78      | 2.(tributylstannyl)anisole                                    | DMF $Pd(Ph_2P)_2Cl_2, UC = 0, 1 M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27              |
| 57        | 78      | 3-(tributy)stannyl)anisole                                    | DMF $Pd(Ph_{2}P)_{2}Cl_{2}$ , LiCl, 120 °C, 15 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80              |
| 58        | 57      | h                                                             | HBr/AcOH 130 °C 2 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23              |
| 59        | 78      | 3-(tributylstannyl)aniline                                    | DMF. $Pd(Ph_2P)_2Cl_2$ LiCl_ 120 °C. 4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65              |
| 60        | 78      | 4-(tributylstannyl)anisole                                    | DMF, $Pd(Ph_2P)_2Cl_2$ , $LiCl_110$ °C, 4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20              |
| 61        | 78      | 4-(tributylstannyl)phenol                                     | 1 dioxane. $Pd(Ph_2P)_4$ LiCl reflux 1.5 h (69%), 2. TBAF. THF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $51^{a}$        |
|           |         | O-TBDMS ether                                                 | room temperature 1 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-              |
| 62        | 78      | 4-(tributylstannyl)-N-Boc-aniline                             | 1. DMF Pd(Ph_2P)_Cl_2 LiCl 115 °C 4 h (84%), 2. HCl/EtOAc, 12 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $63^a$          |
| 63        | 78      | 2-(tributylstannyl)nyridine                                   | dioxane. $Pd(Ph_2P)_4$ , reflux, 10 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66              |
| 64        | 18      | 3-(tributy)stannyl)pyridine                                   | NMP $Pd(Ph_2P)_2Cl_2$ 100 °C 3 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23              |
| 65        | 78      | 6-methoxy-3-(tributylstannyl)pyridine                         | NMP, $Pd(Ph_2P)_2Cl_2$ , $IoC = C, O R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74              |
| AR        | 65      | h                                                             | HBr/AcOH 120 °C 20 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84              |
| 67        | 66      | Ď                                                             | 1. TfoO. CHoClo. <sup>i</sup> ProNEt. 2. benzylamine, 120 °C, 4 h 3. TFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $57^{a}$        |
| vi        |         |                                                               | room temperature $12 h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.              |
| 68        | 18      | 4-(tributylstannyl)pyridine                                   | NMP, Pd(Ph <sub>3</sub> P) <sub>2</sub> Cl <sub>2</sub> , 100 °C, 3 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17              |

<sup>a</sup> Overall yield for the two or three steps. <sup>b</sup> Not applicable.

The cross-coupling reactions and results, and subsequent deprotections or functional group modifications, are summarized in Table 2. Standard literature procedures were employed, and the yields ranged from poor to excellent. Derivatives 10-12 were obtained by reaction with the appropriate acrylate or alkyne.<sup>29</sup> The pyridyl and phenyl derivatives were obtained by reaction with the appropriate aryltributylstannane<sup>30</sup> under standard Stille reaction conditions<sup>31</sup> or by modification of these primary products as shown in Table 2. The Stille reaction also proved useful for the synthesis of the 5-membered heterocycles 39-45, 53, and 54.32 Cross-coupling of the organozinc derivatives<sup>33</sup> (generated in situ from the corresponding organolithium<sup>34</sup> species) was used for the preparation of the imidazoles 50 and 51 and the 2-thiazole 46. A direct coupling<sup>35</sup> of oxazole with the triflate 78 gave the 5-oxazolyl derivative 49.

## **Biological Results**

The results obtained on testing the 2-substituted dipyridodiazepinones against both wild-type RT and Y181C RT are presented in Table 1. In the initial phase of the SAR studies, exemplified by compounds 4-38, we found that 2-substitution on the tricyclic ring system leads to good inhibition of the wild-type enzyme but does not consistently confer activity against the Y181C RT. Our lead structure, the 2-chlorodipyridodiazepinone 16, still proved to be one of the most effective inhibitors of both enzymes.

Against wild-type RT, potency is enhanced by lipophilic substitution at the 2-position and no preference for electron-donating or electron-withdrawing substituents is apparent. Substitution on nucleus A or B rather than on nucleus C or D gives more potent inhibitors, i.e., in combination with a 2-substituent, a methyl group is preferred at the 4-rather than the 5-position, analogous to our earlier finding.<sup>21</sup> For example, the derivatives in which a  $2-CH_3$  or 2-Clsubstituent is combined with a 4-methyl group (compounds 5 and 15) display enhanced potency relative to the derivatives in which these substituents are combined with the N-5-methyl group (compounds 6 and 16). The most potent dipyridodiazepinone inhibitors of wildtype RT are of this 2,4-disubstituted type. However, it should be noted that compound 16 with the N-5-methyl substitution is more effective than 15 against the Y181C enzyme.

The gradation in activity of the 2-alkyl derivatives 5 and 7-9 indicates that there is a limit to the size of the substituent tolerated at the 2-position. The 2,4-dimethyl derivative 5 is the most potent member of this series, and inhibition decreases steadily as the size of the 2-substituent increases. This steric constraint is also apparent in comparing the 2-pyrrolidinyl and 2-piperidinyl derivatives 27 and 30, where there is a substantial decrease in potency with the larger substituent.

Only a few compounds in this first phase of the SAR study inhibited the Y181C RT to a significant extent.

The 2-chloro derivative 16 (IC<sub>50</sub> = 0.21  $\mu$ M) and the 2-(N-pyrrolyl) derivative 33 (IC<sub>50</sub> = 0.21  $\mu$ M) were the most effective inhibitors. In comparing the activity of the 2-chloro derivatives 14–17 against the Y181C RT, it is clear that the cyclopropyl substituent at N-11 has a detrimental effect on potency and that nucleus C confers better activity than does nucleus B. The Y181C RT, selected on exposure of the HIV-1 virus to nevirapine, is less tolerant of the 4-methyl-11-cyclopropyl substitution pattern preferred against the wild-type RT.

The greater potency against the Y181C RT of the pyrrole 33, when compared to the pyrrolidine 27 or the pyrroline 28, indicated to us that 2-aryl substitution might confer combined activity against wild-type and mutant enzymes. Although activity against the wildtype enzyme is moderately attenuated, the aromatic pyrrolyl derivative 33 is more potent than 27 or 28 against the Y181C RT.

With few exceptions, the 2-aryl substitution yields good to excellent inhibitors of both the wild-type RT and Y181C RT. In general the 5-membered aromatic ring systems are more effective than the 6-membered systems, which is consistent with the observation above on the 2-pyrrolidine and 2-piperidine derivatives. The pyrrolyl derivatives 41-43 and the 4-pyrazolyl derivatives 53 and 54 are particularly effective inhibitors of both wild-type and mutant enzymes. The furanyl derivatives 39 and 40 and the thienyl derivatives 44 and 45 are slightly less potent. The 2-phenyldipyridodiazepinone 55 displays moderate inhibition of wildtype RT but is only weakly active against the Y181C RT, whereas the three pyridyl isomers 63, 64, and 68 are more or less equipotent against wild-type RT, but the 2-pyridyl isomer 63 is less effective against the mutant enzyme.

Substitution on the phenyl ring of **55** can improve activity against both wild-type and Y181C enzymes. An amino or hydroxyl group at the *meta* or *para* position of the phenyl ring, as in compounds **58**, **59**, **61**, and **62**, is most effective, although even with these preferred substituents potency still trails the pyrrolyl and pyrazolyl derivatives. Potency is also improved with the *p*-amino substitution in the 3-pyridyl series, compare derivatives **64** and **67**, consistent with the result in the phenyl series. The unexpectedly low activity of the analogous hydroxyl-substituted compound **66** may arise because the pyridone rather than the hydroxypyridine tautomer is preferred.

Secondary Evaluation. Although viral resistance to nevirapine is due mainly to the Y181C mutation, resistance to other members of the non-nucleoside class can result from alternative mutations around the binding pocket. It has been suggested that a combination therapy involving agents with complimentary resistance profiles might be an effective strategy against the virus,<sup>36a,b</sup> but this remains to be demonstrated.<sup>36c-e</sup> In this regard it was of particular interest to profile the more potent inhibitors against other mutant RT enzymes. The results of these secondary evaluations against K103N RT resistant to the pyridinones,<sup>20a</sup> L100I RT resistant to TIBO,<sup>37</sup> P236L RT resistant to BHAP,<sup>20b</sup> and E138K RT resistant to TSAO<sup>37</sup> are presented in Table 3.

Nevirapine (1) and also the 2-chloro lead compound 16 are potent inhibitors of the P236L RT and E138K

Table 3. Secondary Evaluation of Dipyridodiazepinones

|     | IC <sub>50</sub> (μM)     |       |       |                |       |  |  |  |  |
|-----|---------------------------|-------|-------|----------------|-------|--|--|--|--|
| no. | cell culture <sup>a</sup> | L100I | K103N | P236L          | E138K |  |  |  |  |
| 1   | 0.04                      | 0.13  | 1.9   | 0.08           | 0.11  |  |  |  |  |
| 16  | 0.16                      | Ь     | 1.1   | 0.02           | 0.12  |  |  |  |  |
| 42  | 0.04                      | 0.41  | 0.05  | 0.13           | 0.07  |  |  |  |  |
| 53  | 0.04                      | 2.5   | 0.08  | 0.13           | 0.05  |  |  |  |  |
| 54  | 0.12                      | 1.5   | 0.42  | 0.34           | 0.46  |  |  |  |  |
| 61  | 0.30                      | 0.50  | 0.01  | 0.0 <b>0</b> 1 | 0.06  |  |  |  |  |
| 62  | 0.55                      | 0.57  | 0.26  | 0.26           | 0.06  |  |  |  |  |
| 67  | 0.24                      | 0.24  | 0.41  | 0.04           | 0.02  |  |  |  |  |

<sup>a</sup> Human T-cell line c8166, HIV-1 IIIB strain. <sup>b</sup> Not determined.

RT enzymes but are less effective against the K103N RT. This result is not surprising since the K103N mutation has been seen clinically after nevirapine treatment.<sup>19b</sup> Derivatives **53** and **54** are less effective against the L100I RT although they have good activity against the other mutant enzymes. Derivatives **42**, **61**, **62**, and **67** have good activity against all the enzymes with each compound having a distinct profile with respect to effectiveness.

### Conclusion

The potency of the dipyridodiazepinone class against the wild-type RT has been enhanced, and inhibition has been extended to the Y181C RT and other mutant RT enzymes by substitution at the 2-position of the dipyridodiazepinone ring system. Excellent activity against wild-type RT can be achieved with methyl or methoxy substituents, although in these cases there is only moderate activity against the Y181C mutant enzyme. Potency against both wild-type RT and the Y181C RT can be achieved with chloro, pyrrolyl, pyrazolyl, substituted phenyl, and substituted pyridyl groups. In addition, some of these substitutions confer activity against mutant RT enzymes resistant to other classes of nonnucleoside RT inhibitors. It remains to be seen whether or not new mutations in the RT enzyme can confer resistance to these more potent analogs of nevirapine.

## **Experimental Section**

**Experimental Details.** For general experimental details, see ref 21. Mutant HIV-1 RT clones were constructed by a site-directed mutagenesis method<sup>38</sup> and expressed from the vector pKK233-2 (Pharmacia) in *Escherichia coli* strain JM109.<sup>39</sup> The heterodimeric form (p66/p51) of mutant RTs was purified to near homogeneity as previously described,<sup>40</sup> or alternatively, *E. coli* lysates containing mutant RTs were used<sup>39</sup> for the enzyme assays. The details of the enzyme assay have been previously described.<sup>21</sup> J values are reported in hertz (Hz).

General Procedure for the Reaction of  $15^{41}$  with Amines. 5,11-Dihydro-2-[N-(hydroxyethyl)-N-methylamino]-11-ethyl-4-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (26). A mixture of 15 (0.764 g, 2.65 mmol) and N-methylethanolamine (5 mL) was heated at 180 °C in a sealed pressure tube for 5 h. The mixture was cooled and diluted with EtOAc/water. The organic phase was separated, washed, dried (MgSO<sub>4</sub>), filtered, and evaporated to a volume of 5 mL. The title compound crystallized on standing (0.371 g, 1.13 mmol, 43%): mp 139-142 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$ 9.55 (1H, s, NH), 8.40 (1H, dd, J = 2, 5), 7.97 (1H, dd, J = 2, 8), 7.11 (1H, dd, J = 5, 8), 6.24 (1H, s), 4.64 (1H, t, J = 5, OH), 3.99 (2H, q, J = 7), 3.51 (4H, br m), 2.98 (3H, s), 2.23 (3H, s), 1.15 (3H, t, J = 7); MS (CI) 328 (MH<sup>+</sup>). Anal. (C<sub>17</sub>H<sub>21</sub>N<sub>5</sub>O<sub>2</sub>) C, H, N.

**Displacement of the 2-Chloro Substituent with Methylthiolate. Synthesis of 38.** A mixture of 15 (1.00 g, 3.47 mmol) and MeSNa (0.350 g, 5 mmol) in sulfolane (20 mL) was heated at 150 °C for 2 h. The mixture was cooled and poured onto water. The yellow precipitate was collected by filtration, dried, and recrystallized from ethanol to give **38** (0.60 g, 2 mmol, 57%): <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  8.45 (1H, dd, J = 2, 5), 8.12 (1H, dd, J = 2, 8), 7.38 (1H, br s, NH), 7.02 (1H, dd, J = 5, 8), 6.80 (1H, s), 4.22 (2H, q, J = 7), 2.53 (3H, s), 2.29 (3H, s), 1.24 (3H, t, J = 7); MS (CI) 301 (MH<sup>+</sup>). Anal. (C<sub>15</sub>H<sub>16</sub>N<sub>4</sub>OS) C, H, N.

Synthesis of the Triflate 78. 3-Amino-2-bromo-6methoxypyridine (70). To a stirred mixture of 5-amino-2methoxypyridine (2.5 g, 20.2 mmol) and NaOAc (1.6 g, 19.5 mmol) in AcOH (15 mL) was added Br<sub>2</sub> (3.0 g, 18.75 mmol) dropwise. After 20 min the reaction mixture was added to 10% aqueous NaOH (100 mL) and extracted with EtOAc. The organic phase was dried (MgSO<sub>4</sub>), filtered, and evaporated. The residue was fractionated on silica gel to give 70 (2.7 g, 13.3 mmol, 60%). An analytical sample crystallized from EtOAc/ hexane: mp 44-45 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  7.04 (1H, d, J = 8), 6.58 (1H, d, J = 8), 3.86 (3H, s), 3.71 (2H, br s). Anal. (C<sub>6</sub>H<sub>7</sub>N<sub>2</sub>-OBr) C, H, N.

*N*-(2'-Bromo-6'-methoxy-3'-pyridyl)-2-chloro-3-pyridinecarboxamide (73). To a solution of 70 (2.7 g, 13.3 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) were added pyridine (1 mL) and 2-chloronicotinoyl chloride (2.2 g, 12.6 mmol). The mixture was stirred at room temperature for 20 min and then diluted with CH<sub>2</sub>Cl<sub>2</sub> (100 mL), washed, dried (MgSO<sub>4</sub>), filtered, and evaporated. The semisolid residue was triturated with hexane, filtered, and dried to give 73 (4.1 g, 12 mmol, 90%). Recrystallization from EtOAc/CHCl<sub>3</sub> provided an analytical sample: mp 174-176 °C; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>)  $\delta$  10.41 (1H, s, NH), 8.55 (1H, dd, J = 2, 5), 8.09 (1H, dd, J = 2, 8), 7.90 (1H, d, J = 9), 7.59 (1H, dd, J = 5, 8), 6.97 (1H, d, J = 9), 3.88 (3H, s); MS (CI) 342 (MH<sup>+</sup>). Anal. (C<sub>12</sub>H<sub>9</sub>N<sub>3</sub>O<sub>2</sub>BrCl) C, H, N.

*N*-(2'-Bromo-6'-methoxy-3'-pyridinyl)-2-chloro-*N*-methyl-3-pyridinecarboxamide (75). To DMSO (10 mL) stirred under argon was added NaH (50% in oil, 0.3 g, 6.25 mmol). The mixture was heated at 50 °C until H<sub>2</sub> evolution ceased. The amide **73** (2.0 g, 5.8 mmol) was added followed by MeI (0.4 mL). After 30 min the mixture was diluted with EtOAc, washed, dried, filtered, and evaporated. The residue was fractionated on silica gel (CH<sub>2</sub>Cl<sub>2</sub>/EtOH) to give **75** (1.9 g, 5.4 mmol, 86%) as an oil: <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$  8.33 (1H, dd, J =2, 5), 7.94 (1H, d, J = 9), 7.91 (1H, dd, J = 2, 8), 7.37 (1H, dd, J = 5, 8), 6.85 (1H, d, J = 9), 3.78 (3H, s), 3.28 (3H, s); MS (CI) 356 (MH<sup>+</sup>). Anal. (C<sub>13</sub>H<sub>11</sub>N<sub>3</sub>O<sub>2</sub>BrCl) C, H, N.

*N*-(2'-Bromo-6'-methoxy-3'-pyridinyl)-2-(ethylamino)-*N*-methyl-3-pyridinecarboxamide (76). A solution of 75 (1.9 g, 5.4 mmol) and ethylamine (0.7 g) in xylene (5 mL) was sealed in a pressure tube and heated at 150 °C for 4 h. The mixture was cooled, diluted with EtOAc, washed, dried (MgSO<sub>4</sub>), filtered, and evaporated. Chromatography of the residue over silica gel (EtOAc/hexane) gave 76 (1.5 g, 4.1 mmol, 76%) as an oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  8.03 (1H, dd, J = 2, 5), 7.29 (1H, d, J = 8), 7.09 (1H, br d), 6.62 (1H, d, J = 8), 6.35 (1H, br s), 6.24 (1H, br t), 3.91 (3H, s), 3.50 (2H, m), 3.32 (3H, s), 1.26 (3H, t, J = 7); MS (CI) 365 (MH<sup>+</sup>). Anal. (C<sub>15</sub>H<sub>17</sub>N<sub>4</sub>O<sub>2</sub>Br) C, H, N.

5,11-Dihydro-11-ethyl-2-methoxy-5-methyl-6H-dipyrido-[3,2-b:2',3'-e][1,4]diazepin-6-one (36). To a solution of 76 (1.4 g, 3.8 mmol) in xylene was added NaH (50% in oil, 0.9 g, 9.4 mmol). The mixture was heated at 150 °C (bath temperature) for 2 h. After cooling, excess NaH was decomposed with MeOH. The mixture was diluted with EtOAc, washed, dried, filtered, and evaporated. The residue was chromatographed over silica gel (EtOAc/hexane) to give **36** (0.82 g, 2.9 mmol, 76%): mp 116-118 °C (EtOAc/hexane); <sup>1</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$ 8.42 (1H, dd, J = 2, 5), 8.03 (1H, dd, J = 2, 8), 7.79 (1H, d, J= 9), 7.16 (1H, dd, J = 5, 8), 6.68 (1H, d, J = 9), 4.08 (2H, q, J = 7), 3.83 (3H, s), 3.37 (3H, s), 1.22 (3H, t, J = 7); MS (EI) 284 (M<sup>++</sup>). Anal. (C<sub>15</sub>H<sub>16</sub>N<sub>4</sub>O<sub>2</sub>) C, H, N.

**5,11-Dihydro-11-ethyl-2-hydroxy-5-methyl-6H-dipyrido-**[**3,2-b:2',3'-e**][1,4]**diazepin-6-one** (**35**). To a solution of **36** (0.30 g, 1.06 mmol) in AcOH (2 mL) was added hydrobromic acid (48% aqueous solution, 2 mL). The mixture was heated at reflux for 5 min, cooled, and added to 10% aqueous NaOH (10 mL). The mixture was extracted with EtOAc, and the organic phase was washed, dried, filtered, and evaporated to give **35** (0.28 g, 1.04 mmol, 98%): mp 215–218 °C (EtOAc); <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  10.84 (1H, br s), 8.41 (1H, dd, J = 2, 5), 8.01 (1H, dd, J = 2, 8), 7.70 (1H, d, J = 9), 7.15 (1H, dd, J = 5, 8), 6.48 (1H, d, J = 9), 4.02 (2H, br), 3.56 (3H, s), 1.17 (3H, t, J = 7); MS (EI) 270 (M<sup>++</sup>). Anal. (C<sub>14</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>) C, H, N.

5,11-Dihydro-11-ethyl-5-methyl-2-[[(trifluoromethyl)sulfonyl]oxy]-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6one (78). To a stirred solution of 35 (2.602 g, 9.64 mmol) in CHCl<sub>3</sub> (50 mL) cooled on ice under nitrogen was added diisopropylethylamine (2.0 mL) followed by triflic anhydride (1.65 mL, 10 mmol) added dropwise over 5 min. The mixture was allowed to warm to room temperature and then diluted with EtOAc (150 mL), washed, dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and evaporated. The residue was chromatographed over silica gel (EtOAc/hexane) to give the triflate (2.974 g, 7.47 mmol, 77%): mp 92-93 °C (<sup>i</sup>Pr<sub>2</sub>O/hexane); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  8.42 (1H, dd, J = 2, 5), 8.13 (1H, dd, J = 2, 8), 7.62 (1H, d, J = 8), 7.07 (1H, dd, J = 5, 8), 6.06 (1H, d, J = 8), 4.13 (2H, q, J = 7), 3.52 (3H, s), 1.27 (3H, t, J = 7). Anal. (C<sub>15</sub>H<sub>13</sub>N<sub>4</sub>O<sub>4</sub>SF<sub>3</sub>) C, H, N.

Typical Procedure for the Displacment of the Triflate Group by Amines. 5,11-Dihydro-11-ethyl-5-methyl-2morpholino-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6one (31). To the triflate 78 (0.15 g, 0.37 mmol) in a pressure tube was added morpholine (0.5 mL). The tube was sealed, and the mixture was heated at 110 °C for 1 h. The mixture was cooled, diluted with CH<sub>2</sub>Cl<sub>2</sub>, washed, dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and evaporated. The residue was fractionated by chromatography over silica gel (EtOAc/hexane) to give 31 (0.091 g, 0.27 mmol, 72%): mp 157-160 °C (<sup>i</sup>Pr<sub>2</sub>O); <sup>i</sup>H NMR (DMSO-d<sub>6</sub>)  $\delta$  8.40 (1H, dd, J = 2, 5), 8.00 (1H, dd, J = 2, 8), 7.64 (1H, d, J = 9), 7.13 (1H, dd, J = 5, 8), 6.66 (1H, d, J = 9), 4.01 (2H, q, J = 7); MS (CI) 340 (MH<sup>+</sup>). Anal. (C<sub>18</sub>H<sub>21</sub>N<sub>5</sub>O<sub>2</sub>) C, H, N.

5,11-Dihydro-11-ethyl-5-methyl-2-(1'-pyrazolyl)-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (34). A mixture of 16 (0.169 g, 0.59 mmol) and hydrazine hydrate (0.35 g) in dioxane (1 mL) was heated at 150 °C in a sealed tube for 48 h. The reaction mixture was diluted with CHCl<sub>3</sub>, washed with water, dried, filtered, and evaporated. The residue was fractionated on silica gel (CHCl<sub>3</sub>/EtOH) to give the 2-hydrazino derivative as an oil (0.144 g) which was used directly in the next reaction. A mixture of the hydrazine (0.141 g), malonaldehyde diethyl acetal (0.5 mL), acetic acid (0.4 mL), and water (1 mL) in dioxane (10 mL) was heated under reflux for 10 h. The mixture was diluted with EtOAc, washed with water, dried, filtered, and evaporated. The residue was purified by chromatography over silica gel (EtOAc/hexane) followed by crystallization to give **34** (0.045 g, 0.14 mmol, 24%): mp 145-147 °C  $({}^{i}Pr_{2}O); {}^{1}H$  NMR (CDCl<sub>3</sub>)  $\delta$  8.48 (1H, m), 8.41 (1H, dd, J = 2, 5), 8.13 (1H, dd, J = 2, 8), 7.75 (1H, d, J = 9), 7.71 (1H, m), 7.62 (1H, d, J = 9), 7.05 (1H, dd, J = 5, 8), 6.45 (1H, dd, J = 12, 3), 4.23 (2H, q, J = 7), 3.53 (3H, s), 1.31 (3H, t, J = 7); MS (CI) 321 (MH<sup>+</sup>). Anal. (C<sub>17</sub>H<sub>16</sub>N<sub>6</sub>O) C, H, N.

Typical Procedures for the Pd-Catalyzed Cross-Coupling Reactions of the Triflates. 5,11-Dihydro-11ethyl-5-methyl-2-[2-(methoxycarbonyl)vinyl]-6H-dipyrido-[3,2-b:2',3'-e][1,4]diazepin-6-one (10). To a solution of 78  $(0.120\mbox{ g},\,0.30\mbox{ mmol})$  in  $Et_3N$  were added methyl acrylate  $(0.20\mbox{ }$ g) and  $Pd(Ph_3P)_2Cl_2$  (0.011 g). The mixture was heated at 120 °C in a pressure tube for 5 h, cooled, diluted with EtOAc, washed, dried, filtered, and evaporated. The residue was purified by flash chromatography over silica gel (EtOAc/ hexane) to give recovered 78 (0.026 g) and 10 (0.059 g, 57%): mp 138–139 °C (EtOAc/hexane); <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 8.42 (1H, dd, J = 2, 5), 8.11 (1H, dd, J = 2, 8), 7.58 (1H, d, J = 14), 7.47(1H, d, J = 8), 7.17 (1H, d, J = 8), 7.03 (1H, dd, J = 5, 8), 6.92(1H, d, J = 14), 4.24 (2H, q, J = 7), 3.82 (3H, s), 3.51 (3H, s),1.28 (3H, t, J = 7); MS (CI) 339 (MH<sup>+</sup>). Anal. (C<sub>18</sub>H<sub>18</sub>N<sub>4</sub>O<sub>3</sub>) C, H, N.

5,11-Dihydro-11-ethyl-5-methyl-2-(3-aminophenyl)-6Hdipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (59). A mixture of the triflate 78 (0.200 g, 0.50 mmol), 3-(tributylstannyl)aniline<sup>1</sup> (0.227 g), LiCl (0.088 g), and Pd(Ph<sub>3</sub>P)<sub>2</sub>Cl<sub>2</sub> (0.031 g) in DMF (2 mL) was heated at 130 °C for 2 h. The mixture was cooled, treated with aqueous potassium fluoride for 2 h, diluted with EtOAc, washed, dried, filtered, and evaporated. The residue was purified by flash chromatography over silica gel (EtOAc/hexane) to give **59** (0.148 g, 0.43 mmol, 85%): mp 155–157 °C (<sup>i</sup>Pr<sub>2</sub>O/EtOAc); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  8.40 (1H, dd, J = 2, 5), 8.11 (1H, dd, J = 2, 8), 7.51 (2H, s), 7.44–7.19 (3H, m), 7.01 (1H, dd, J = 5, 8), 6.74 (1H, m), 4.31 (2H, q, J = 7), 3.78 (2H, br, NH<sub>2</sub>), 3.54 (3H, s), 1.32 (3H, t, J = 7); MS (CI) 346 (MH<sup>+</sup>). Anal. (C<sub>20</sub>H<sub>19</sub>N<sub>5</sub>O) C, H, N.

5,11-Dihydro-11-ethyl-5-methyl-2-(5-imidazolyl)-6Hdipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (51). (a) 1-(N,N-Dimethylsulfonamido)-5-iodoimidazole. To a solution of 1-(N,N-dimethylsulfonamido)imidazole<sup>34b</sup> (3.516 g, 20 mmol) in THF (100 mL) cooled below -60 °C (internal temperature) was added BuLi (1.4 M in hexanes, 15.2 mL) at such a rate that the internal temperature remained below -60 °C. After 30 min Et<sub>3</sub>SiCl (3.7 mL) was added all at once, and the reaction mixture was allowed to warm to room temperature. After 3 h the mixture was cooled to -50 °C, and BuLi (1.3 M in cyclohexane, 20 mL) was added at such a rate that the internal temperature remained below -50 °C. The mixture was stirred for 1 h, and iodine (6.73 g, 26.3 mmol) in THF (15 mL) was added all at once. The reaction mixture was allowed to warm to room temperature, diluted with EtOAc, washed with aqueous sodium thiosulfate, dried, filtered, and evaporated. The residue was dissolved in THF (100 mL), and tetrabutylammonium fluoride (1 M in THF, 25 mL) was added. After 15 min, the mixture was diluted with EtOAc, washed, dried, filtered, and evaporated. The residue was purified by chromatography over silica gel (EtOAc/hexane) to give the 1-(N.Ndimethylsulfonamido)-5-iodoimidazole (2.68 g, 8.6 mmol, 42%): <sup>1</sup>H NMR (CDCl<sub>3</sub>) 8.09 (1H, d, J = 1), 7.18 (1H, d, J = 1), 3.00 (6H, s).

(b) To a solution of the 1-(N,N-dimethylsulfonamido)-5iodoimidazole (1.222 g, 3.9 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) at room temperature under nitrogen was added EtMgBr (1 M in Et<sub>2</sub>O,  $(4.5 \text{ mL})^{34c}$  dropwise. After 10 min ZnCl<sub>2</sub> (1 M in Et<sub>2</sub>O, 12 mL) was added followed by Pd(Ph<sub>3</sub>P)<sub>4</sub> (0.280 g, 0.40 mmol), triflate 78 (1.502 g, 3.7 mmol), and THF (30 mL), and the mixture was heated under reflux for 6 h. On cooling the reaction mixture was diluted with EtOAc, washed dried, filtered, and evaporated. The residue was fractionated over neutral alumina (grade II) (hexane/CH2Cl2 to CH2Cl2/EtOH gradient) to give 5,11-dihydro-11-ethyl-5-methyl-2-[1-(N,N-dimethylsulfonamido)-5-imidazolyl]-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (0.35 g, 22%) which was directly deprotected. To a solution of the above product (0.319 g, 0.75 mmol) in EtOH (20 mL) was added KOH (0.14 g), and the mixture was heated at 85 °C for 2 h. The reaction mixture was diluted with CHCl<sub>3</sub>, washed with water, dried, filtered, and evaporated. Fractionation of the residue over deactivated basic alumina (CHCl<sub>3</sub>/ EtOH) gave 51 (0.134 g, 0.42 mmol, 55%): mp 177-180 °C; <sup>1</sup>H NMR (DMSO- $d_6$ )  $\delta$  12.35 (1H, s), 8.44 (1H, dd, J = 5), 8.04 (1H, dd, J = 2, 8), 7.86 - 7.58 (4H, m), 7.16 (1H, dd, J = 5, 8),4.16 (2H, m), 3.43 (3H, s), 1.22 (3H, t, J = 7). Anal.  $(C_{17}H_{16}N_6O \cdot 0.5H_2O)$  C, H, N.

5,11-Dihydro-11-ethyl-5-methyl-2-(2-thiazolyl)-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (46). To a mixture of butyllithium (1.6 M in hexane, 1.25 mL, 2.0 mmol) in THF (5 mL) cooled to -70 °C under nitrogen was added thiazole (0.095 g, 1.12 mmol). The mixture was stirred at -70 °C for 10 min,  $ZnCl_2$  (1 M in ether, 3.3 mL) was added, and the reaction mixture was allowed to warm to room temperature.  $Pd(Ph_3P)_4$ (0.010 g, 0.014 mmol) and triflate 78 (0.150 g, 0.37 mmol) were added, and the mixture was heated under reflux for 2 h. Further catalyst (0.010 g) was added, and heating was continued for 1 h. The mixture was cooled, diluted with EtOAc, washed, dried, filtered, and evaporated. The residue was purified by chromatography over silica gel (EtOAc/CH<sub>2</sub>-Cl<sub>2</sub>) to give **46** (0.080 g, 63%): mp 114-115 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  8.43 (1H, dd, J = 2, 5), 8.14 (1H, dd, J = 2, 8), 7.96 (1H, d, J = 8), 7.89 (1H, d, J = 3), 7.59 (1H, d, J = 8), 7.43(1H, d, J = 3), 7.04 (1H, dd, J = 5, 8), 4.28 (2H, q, J = 7), 3.55(3H, s), 1.33 (3H, t, J = 7). Anal.  $(C_{17}H_{15}N_5OS) C, H, N$ .

Synthesis of 2-Bromo-11-cyclopropyl-5,11-dihydro-5methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (18). N-(6'-Bromo-2'-chloro-3'-pyridinyl)-2-chloro-3-pyridine**carboxamide** (74). To a solution of 3-amino-6-bromo-2chloropyridine (72) (10.72 g, 51.8 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (100 mL) was added pyridine (5 mL) followed by 2-chloronicotinoyl chloride (8.75 g, 50 mmol) added portionwise over 30 min. The mixture was stirred for 18 h, diluted with CH<sub>2</sub>Cl<sub>2</sub>, washed, dried, filtered, and evaporated. The residue was crystallized from EtOAc/CH<sub>2</sub>Cl<sub>2</sub> to give 74 (11.49 g, 33.2 mmol, 64%): mp 184-185 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  8.98 (1H, s), 8.81 (1H, d, J =8), 8.58 (1H, dd, J = 2, 5), 8.32 (1H, dd, J = 2, 8), 7.51 (1H, d, J = 8), 7.47 (1H, dd, J = 5, 8). Anal. (C<sub>11</sub>H<sub>6</sub>N<sub>3</sub>OCl<sub>2</sub>Br) C, H, N.

**N-(6'-Bromo-2'-chloro-3'-pyridinyl)-2-(cyclopropylamino)-3-pyridinecarboxamide (80).** A mixture of **74** (7.00 g, 20.2 mmol) and cyclopropylamine (2.9 g, 50.8 mmol) in dioxane (15 mL) was heated at 95 °C for 72 h. The mixture was diluted with EtOAc and washed with water. The organic phase was extracted with 3 N aqueous HCl which on standing gave a crystalline precipitate (the hydrochloride salt of **80**). The precipitate was collected by filtration, redissolved in aqueous KOH, and extracted with EtOAc. The organic phase was dried, filtered, and evaporated to give **80** (2.21 g, 6 mmol, 30%): mp 135-137 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  8.67 (1H, d, J = 8), 8.44 (1H, dd, J = 2, 5), 8.19 (1H, s), 8.09 (1H, s), 7.75 (1H, dd, J =2, 8), 7.47 (1H, d, J = 8), 6.67 (1H, dd, J = 5, 8), 2.90 (1H, m), 0.86 (2H, m), 0.13 (2H, m). Anal. (C<sub>14</sub>H<sub>12</sub>N<sub>4</sub>OClBr) C, H, N.

2-Bromo-11-cyclopropyl-5-methyl-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (18). To a solution of 80 (1.274 g, 3.5 mmol) in pyridine (7 mL) was added NaHMDS (1 M in THF, 7.5 mL). The mixture was heated at 95 °C (bath temperature) under nitrogen for 30 min. Ethanol (1 mL) was added, and the mixture was evaporated to dryness. Treatment of the residue with water (25 mL) gave 81 which was collected by filtration, dried, and used without further purification in the next step (yield: 0.996 g, 3.0 mmol, 86%). To a suspension of 81 (0.979 g, 2.96 mmol) in DMSO (4 mL) stirred under nitrogen was added KOtBu (1 M in THF, 4.0 mL). After 3 min iodomethane (0.30 mL) was added, and the mixture was stirred at room temperature for 25 min. The reaction mixture was diluted with EtOAc, washed, dried, filtered, and evaporated to give 18 (0.684 g, 1.98 mmol, 67%). An analytical sample was crystallized from EtOAc/CH<sub>2</sub>Cl<sub>2</sub>: mp 232-233 °C; <sup>1</sup>H NMR  $(CDCl_3) \delta 8.47 (1H, dd, J = 2, 5), 8.08 (1H, dd, J = 2, 8), 7.32$ 7.25 (2H, m), 7.07 (1H, dd, J = 5, 8), 3.68 (1H, m), 3.44 (3H, m)s), 1.02 (2H, m), 0.53 (2H, m). Anal.  $(C_{15}H_{13}N_4OBr) C$ , H, N.

11-Cyclopropyl-5-methyl-2-(4-pyridinyl)-5,11-dihydro-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (68). To 4-bromopyridine hydrochloride (0.200 g, 1.02 mmol) in THF (5 mL) at 0 °C was added BuLi (2 M in cyclohexane, 0.5 mL). The mixture was cooled to -70 °C, and further BuLi was added (0.5 mL). After 5 min, tributyltin chloride (0.27 mL, 1 mmol) was added, and the mixture was allowed to warm to room temperature. The reaction mixture was diluted with EtOAc, washed, dried, filtered, and evaporated to give crude 4-(tributylstannyl)pyridine which was used without further purification in the next step. To the crude stannane dissolved in NMP (3 mL) were added 18 (0.170 g, 0.5 mmol) and  $Pd(Ph_3P)_2Cl_2$ (0.040 g, 0.057 mmol). The mixture was heated under nitrogen at 100 °C for 3 h, cooled, diluted with EtOAc, washed, dried, filtered, and evaporated. Fractionation over silica gel (EtOAc/ hexane) gave 68 (0.030 g, 0.087 mmol, 17%): mp 176-178 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  8.70 (2H, m), 8.50 (1H, dd, J = 2, 5), 8.13 (1H, dd, J = 2, 8), 7.93 (2H, m), 7.67 (1H, d, J = 8), 7.57 (1H, d, Jd, J = 8), 7.08 (1H, dd, J = 5, 8), 3.86 (1H, m), 3.52 (3H, s), 1.26 (2H, m), 0.61-0.50 (2H, m). Anal. (C<sub>20</sub>H<sub>17</sub>N<sub>5</sub>O·0.75H<sub>2</sub>O) C, H, N.

Acknowledgment. We thank Scot Campbell, Tracy Saboe, and Scott Leonard for providing NMR data and Roger Dinallo, Keith McKellop, and Walter Davidson for providing MS data.

#### References

 For the previous paper in this series, see: Proudfoot, J. R.; Patel, U. R.; Kapadia, S. R.; Hargrave, K. D. Novel Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase. 3. Dipyrido[2,3-b: 2',3'-e]diazepinones. J. Med. Chem. 1995, 36, 1406-1410.

- (2) Mitsuya, H.; Weinhold, K. J.; Furman, P. A.; St. Clair, M. H.; Nusinoff-Lehrman, S.; Gallo, R. C.; Bolognesi, D.; Barry, D. W.; Broder, S. 3'-Azido-3'-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus
- (3) Yarchoan, R.; Mitsuya, H.; Thomas, R. V.; Pluda, J. M.; Hartman, N. R.; Perno, C.-F.; Marczyk, K. S.; Allain, J.-P.; Johns, D. G.; Broder, S. In Vivo Activity Against HIV and favorable Territistic Define of 20 (discorrectorized sector) 2019 Toxicity Profile of 2',3'-dideoxyinosine. Science 1989, 245, 412-417.
- (4) Mitsuya, H.; Broder, S. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotropic virus type III/ lymphadenopathy associated virus (HTLV-III/LAV) by 2',3'dideoxynucleosides. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 1911-1915.
- (5) (a) Balzarini, J.; Kang, G.-J.; Dalal, M.; Herdewijn, P.; De Clercq, E.; Broder, S.; Johns, D. G. The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2',3'-didehydro-2',3'-dideoxyribonucleosides: a comparison with their parental 2',3'-dideoxyribonucleosides. Mol. Pharmacol. 1987, 32, 162–167. (b) Mansuri, M. M.; Starrett, J. E.; Ghazzouli, I.; Hitchcock, M. J. M.; Sterzycki, R. Z.; Brankovan, V.; Lin, T.-S.; August, E. M.; Prusoff, W. H.; Sommadossi, J. P.; Martin, J. C. 1-(2,3-Dideoxy-β-D-glycero-pent-2 conductory and the property of a continuous sector and a continuous sector. 2-enofuranosyl)thymine. A highly potent and selective anti HIV-1 agent. J. Med. Chem. 1989, 32, 461-466.
- (6) Merluzzi, V.; Hargrave, K. D.; Labadia, M.; Grozinger, K.; Skoog, M.; Wu, J. C.; Shih, C.-K.; Eckner, K.; Hattox, S.; Adams, J.; Rosenthal, A. S.; Faanes, R.; Eckner, R. J.; Koup, R. A.; Sullivan, J. L. Inhibition of HIV-1 replication by a Non-Nucleoside Reverse Transcriptase Inhibitor. Science 1990, 250, 1411–1413. (7) (a) Miyasaka, T.; Tanaka, H.; Baba, M.; Hayakawa, H.; Walker,
- R. T.; Balzarini, J.; De Clercq, E. A. A novel lead for specific anti-HIV-1 agents: 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine. J. Med. Chem. 1989, 32, 2507–2509. (b) Tanaka, H.; Takashima, H.; Ubasawa, M.; Sekiya, K.; Nitta, I.; Baba, M.; Shigeta, S., Walker, R. T.; De Clerq, E.; Miyasaka, T. Structureactivity relationships of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine analogues: effect of substitutions at the C-6 phenyl ring and at the C-5 position on anti-HIV-1 activity. J. Med. Chem. 1992, 35, 337-345.
- (a) Pauwels, R.; Andries, K.; Desmyter, J.; Schols, D.; Kukla, (8)M. J.; Breslin, H. J.; Raeymaeckers, A.; Van Gelder, J.; Woestenborghs, R.; Heykants, J.; Schellekens, K.; Janssen, M. A. C.; De Clerg, E.; Janssen, P. A. J. Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature (London) 1990, 343, 470–474. (b) Kukla, M. J.; Breslin, H. J.; Pauwels, R.; Fedde, C. L.; Miranda, M.; Scott, M. K.; Sherrill, R. G.; Raeymaekers, A.; Van Gelder, J.; Andries, K.; Janssen, M. A. C.; De Clerq, E.; Janssen, P. A. J. Synthesis and Anti-HIV-1 Activity of 4,5,6,7-Tetrahydro-5-methylimidazo[4,5, 1-jk][1,4]benzodiazepin-2(1H)-one (TIBO) Derivatives. J. Med. Chem. 1991, 34, 746-751.
- Goldman, M. E.; Nunberg, J. H.; O'Brien, J. A.; Quintero, J. C.; Schleif, W. A.; Freund, K. F.; Gaul, S. L.; Saari, W. S.; Wai, J. (9) S.; Hoffman, J. M.; Anderson, P. S.; Hupe, D. J.; Emini, E. A.; Stern, A. M. Pyridinone derivatives: specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 6863-6867.
- (10) (a) Romero, D. L.; Busso, M.; Tan, C.-K.; Reusser, F.; Palmer, J. R. Poppe, S. M.; Aristoff, P. A.; Downey, K. M.; So, A. G.; Resnick, L.; Tarpley, W. G. Nonnucleoside reverse transcriptase inhibitors that potently and specifically block human immunodeficiency virus type 1 replication. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8806-8810. (b) Romero, D. L.; Morge, R. A.; Genin, M. J.; Biles, C.; Busso, M.; Resnick, L.; Althaus, I. W.; Reusser, Thomas, R. C.; Tarpley, W. G. Bis(heteroaryl)piperazine (BHAP) reverse transcriptase inhibitors: structure-activity relationships of novel substituted indole analogues and the identification of 1-[(5-methanesulfonamido-1H-indol-2-yl)-carbonyl]-4-[3-[(1-methylethyl)amino]pyridinyl] piperazine monomethane sulfonate (U-90152S), a second generation clinical candidate. J. Med. Chem. 1993, 36, 1505-1508. (c) Romero, D. L.; Morge, R. A.; Biles, C.; Berrios-Pena, N.; May, P. D.; Palmer, J. R.; Johnson, P. D.; Smith, H. W.; Busso, M.; Tan, C.-K.; Voorman, R. J.; Reusser, F.; Althaus, I. W.; Downey, K. M.; So, A. G.; Resnick, L.; Tarpley, W. G.; Aristoff, P. A. Discovery, Synthesis, and Bioactivity of Bis(heteroaryl)pipera-
- zines. 1. A novel Class of non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors. J. Med. Chem. 1994, 37, 999-1014.
   Perez-Perez, M. J.; San-Felix, A.; Balzarini, J.; De Clercq, E.; Camarasa, M. J. TSAO Analogues. Stereospecific synthesis and anti-HIV-1 activity of 1-[2',5' bis-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole 2'',2''-dioxide)pyrimidine and pyrimidine modified nucleosides. J. Med. Chem. 1992, 35, 2988-2995.

- (12) (a) Wu, J. C.; Warren, T. C.; Adams, J.; Proudfoot, J.; Skiles, J.; Raghavan, P.; Perry, C.; Potoki, I.; Farina, P. F.; Grob, P. M. A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site. Biochemistry 1991, 30, 2022-2026. (b) Cohen, K. A.; Hopkins, J.; Ingraham, R. H.; Pargellis, C.; Wu, J. C.; Palladino, D. E. H.; Kinkade, P.; Warren, T. C.; Rogers, S.; Adams, J.; Farina, P. F.; Grob, P. M. Characterization of the binding site for Nevirapine (BI-RG-587), a nonnucleoside inhibitor of human immunodeficiency virus type-1 reverse transcriptase. J. Biol. Chem. 1991, 266, 14670-14674.
- (13) (a) Kohlstaedt, L. A.; Wang, J.; Friedman, J. M.; Rice, P. A.; Steitz, T. A. Crystal structure at 3.5Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 1992, 256, 1783–1790. (b) Smerdon, S. J.; Jager, J.; Wang, J.; Kohlstaedt, L. A.; Chirino, A. J.; Friedman, J. M.; Rice, P. A.; Steitz, T. A. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 3911-3915.
- (14) Ren, J.; Esnouf, R.; Arman, E.; Somers, D.; Ross, C.; Kirby, I.; Keeling, J.; Darby, G.; Jones, Y.; Stuart, D.; Stammers, D. High Resolution Structures of HIV-1 RT from four RT-inhibitor
- complexes. Nature, Struct. Biol. 1995, 2, 293-302. Ding, J.; Das, K.; Moereels, H.; Koymans, L.; Andries, K.; Janssen, P. A. J.; Hughes, S. H.; Arnold, E. Structure of HIV-1 (15)RT/RIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Nature, Struct. Biol. 1995, 2, 407-415.
- (16) Esnouf, R.; Ren, J.; Ross, C.; Jones, Y.; Stammers, D.; Stuart, D. Mechanism of Inhibition of HIV-1 Reverse Transcriptase by Nonnucleoside Inhibitors. Nature, Struct. Biol. 1995, 2, 303-308
- (17)Spence, R. A.; Kati, W. M.; Anderson, K. S.; Johnson, K. A. Mechanism of Inhibition of HIV-1 Reverse Transcriptase by
- Nonnucleoside Inhibitors. Science 1995, 267, 988–993. (a) Larder, B. A.; Darby, G.; Richman, D. D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 1989, 243, 1731–1734. (b) Gu, Z.; Gao, Q.; Li, X.; Parniak, M. A.; Wainberg, M. A. Novel mutation in the human (18)immunodeficiency virus type 1 reverse transcriptase gene that encodes cross-resistance to 2', 3'-dideoxyinosine and 2', 3'dideoxycytidine. J. Virol. 1992, 66, 7128-7135. (c) Reichman, R. C.; Tejani, N.; Lambert, J. L.; Strussenberg, J.; Bonnez, W.; Blumberg, B.; Epstein, L.; Dolin, R. Didanosine (DDI) and zidovudine (ZDV) susceptibilities of human immunodeficiency virus (HIV) isolates from long term recipients of DDI. Antiviral Res. 1993, 20, 267-277.
- (19) (a) Richman, D.; Shih, C.-K.; Lowy, I.; Rose, J.; Prodanovich, P.; Goff, S.; Griffin, J. Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture. *Proc. Natl. Acad. Sci. U.S.A.* **1991**, *88*, 11241–11245. (b) Richman, D. D.; Havlir, D.; Corbeil, J.; Looney, D.; Inacio, C.; Spector, S. A.; Sullivan, J.; Cheeseman, S.; Barringer, K.; Pauletti, D.; Shih, C.-K.; Myers, M.; Griffin, J. Nevirapine Resistance Mutations of Human Immunodeficiency Virus Type 1 Selected during Therapy. J. Virol. 1994, 68, 1660-1666.
- (20) (a) Nunberg, J. H.; Schleif, W. A.; Boots, E. J.; O'Brien, J. A.; Quintero, J. C.; Hoffman, J. M.; Emini, E. A.; Goldman, M. E.
   Viral resistance to human immunodeficiency virus type 1-specific pyridinone reverse transcriptase inhibitors. J. Virol. 1991, 65, 4887–4892. (b) Dueweke, T. J.; Pushkarskaya, T.; Poppe, S. M.; Swaney, S. M.; Zhao, J. Q.; Chen, I. S. Y.; Stevenson, M.; Tarpley, W. G. A mutation in reverse transcriptase of bis-(heteroaryl)piperazine-resistant human immunodeficiency virus type 1 that confers increased sensitivity to other nonnucleoside
- type I that conters increased sensitivity to other nonintelestice inhibitors. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 4713-4717.
  (21) Hargrave, K. D.; Proudfoot, J. R.; Grozinger, K. G.; Cullen, E.; Kapadia, S. R.; Patel, U. R.; Fuchs, V. U.; Mauldin, S. C.; Vitous, J.; Behnke, M. L.; Klunder, J. M.; Pal, K.; Skiles, J. W.; McNeil, D. W.; Rose, J. M.; Chow, G. C.; Skoog, M. T.; Wu, J. C.; Schmidt, G.; Engel, W. W.; Eberlein, W. G.; Saboe, T. D.; Campbell, S. J.; Rosenthal, A. S.; Adams, J. Novel non-nucleoside inhibitors of HIV-1 reverse transcriptase 1. Triovice provide personance. HIV-1 reverse transcriptase. 1. Tricyclic pyridobenzo- and dipyridodiazepinones. J. Med. Chem. 1991, 34, 2231-2241.
- (22) The Chemistry of heterocyclic compounds. Pyridine and derivatives part three; Klingsberg, E., Ed.; John Wiley and Sons: New York, London, 1962; pp 509–890.
  (23) Lamm, G. Ger. Offen. 2,538,950, March 1977; Chem. Abstr. 1977,
- 86, 189730c.
- (24) Grozinger, K.; Fuchs, V.; Hargrave, K. D.; Mauldin, S.; Vitous, J.; Campbell, S.; Adams, J. Synthesis of Nevirapine and its major metabolite. J. Heterocycl. Chem. 1995, 32, 259-263.
   (25) Tsuyoshi, F.; Norihiko, Y.; Akira, S. A facile preparation of fluoropyridines from aminopyridines via diazotization and fluoropyridines from aminopyridines onlytions. J. Eluoring and fluoropyridines from aminopyridines on the solutions. J. Eluoring and fluoropyridines from aminopyridines via diazotization aminopyri
- rodediazotization in HF or HF-pyridine solutions. J. Fluorine Chem. 1988, 38, 435-438.
- The Chemistry of heterocyclic compounds. Pyrroles part one; (26)Jones, R. A., Ed.; John Wiley and Sons: New York, London, 1990; p 220.

- (27) Final, I. L.; Hurlock, R. J. The preparation of some trinitrophenylpyrazoles. J. Chem. Soc. 1957, 3024-3027.
- (28) (a) Stille, J. K. The Palladium catalyzed cross-coupling reactions of organotin reagents with organic electrophiles. Angew. Chem., Int. Ed. Engl. 1986, 25, 508-534. (b) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: London, 1985.
  (29) (a) Heck, R. F. Palladium catalyzed reactions of organic halides
- (29) (a) Heck, R. F. Palladium catalyzed reactions of organic halides with olefins. Acc. Chem. Res. 1979, 12, 146-151. (b) Sakamoto, T.; Shiraiwa, M.; Kondo, Y.; Yamanaka, H. Synthesis 1983, 312-314.
- (30) The arylstannanes were prepared from the corresponding organolithium species by reaction with tributyltin chloride. The organolithium species were prepared by standard methods. (a) Brandsma, L.; Verkuijsse, H. Preparative Polar Organometallic Chemistry 1; Springer-Verlag: Berlin, Germany, 1987. (b) Wakefield, B. J. Organolithium Methods; Academic Press: London, 1988.
- (31) Echavarren, A. M.; Stille, J. K. Palladium-catalyzed coupling of aryl triflates with organostannanes. J. Am. Chem. Soc. 1987, 109, 5478-5486.
- (32) (a) Iddon, B. Synthesis and reactions of lithiated monocyclic azoles containing two or more hetero-atoms part II: oxazoles. *Heterocycles* 1994, 37, 1321-1346. (b) Iddon, B. Synthesis and reactions of lithiated monocyclic azoles containing two or more hetero-atoms part III: pyrazoles. *Heterocycles* 1994, 37, 2087-2147.
- (33) Negishi, E. Palladium- or Nickel-catalyzed cross coupling. A New selective method for carbon-carbon bond formation. Acc. Chem. Res. 1982, 15, 340-348.
- (34) (a) Bell, A. S.; Roberts, D. A.; Ruddock, K. S. A Synthesis of 2and 4(5)-(2-pyridinyl)imidazoles by palladium-catalysed crosscoupling reactions. *Tetrahedron Lett.* 1988, 29, 5013-5016. (b) Carpenter, A. J.; Chadwick, D. J. High yielding synthesis of 4(5)substituted imidazoles via organolithium intermediates. The utility of sulfonamide N-protection and silicon containing blocking groups. *Tetrahedron* 1986, 42, 2351-2358. (c) Turner, R. M.; Lindell, S. D.; Ley, S. V. A facile route to imidazol-4-yl anions and their reaction with carbonyl compounds. *J. Org. Chem.* 1991, 56, 5739-5740.
- (35) Aoyagi, Y.; Inoue, A.; Koizumu, I.; Hashimoto, R.; Tokunaga, K.; Gohma, K.; Komatsu, J.; Sekine, K.; Miyafuji, A.; Kunoh, J.; Honma, R.; Akita, Y.; Ohta, A. Palladium catalyzed cross coupling reactions of chloropyrazines with aromatic heterocycles. *Heterocycles* 1992, 33, 257-272.

- (36) (a) Balzarini, J.; Karlsson, A.; Perez-Perez, M.-J.; Camarasa, M.-J.; De Clercq, E. Knocking out concentrations of HIV-1 specific inhibitors completely suppress HIV-1 infection and prevent the emergence of drug-resistant virus. Virology 1993, 196, 576-585. (b) Chow, Y.-K.; Hirsh, M. S.; Merrill, D. P.; Bechtel, L. J.; Eron, J. J.; Kaplan, J. C.; D'Aquila, R. T. Use of evolutionary limitations of HIV-1 multidrug resistance to optimize therapy. Nature 1993, 361, 650-654. (c) Chow, Y.-K.; Hirsch, M. S.; Kaplan, J. C.; D'Aquila, R. T. HIV-1 error revealed. Nature 1993, 364, 679. (d) Larder, B. A.; Kellam, P.; Kemp, S. D. Convergent combination therapy can select viable multidrug-resistant HIV-1 in vitro. Nature 1993, 365, 451-453. (e) Emini, E. A.; Graham, D. J.; Gotlib, L.; Condra, J. H.; Byrnes, V. W.; Schleif, W. A. HIV and multidrug resistance. Nature 1993, 364, 679.
- (37) Balzarini, J.; Karlsson, A.; Perez-Perez, M.-J.; Vrang, L.; Walbers, J.; Zhang, H.; Oberg, B.; Vandamme, A.-M.; Camarasa M.-J.; De Clercq, E. HIV-1 specific reverse transcriptase inhibitors show differential activity against HIV-1 mutant strains containing different amino acid substitutions in the reverse transcriptase. Virology 1993, 192, 246-253.
- (38) Kunkel, T. A.; Roberts, J. D.; Zakour, R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. *Methods Enzymol.* 1987, 154, 367-382.
- (39) Shih, C.-K.; Rose, J. M.; Hansen, G. L.; Wu, J. C.; Bacolla, A.; Griffin, J. A. Chimeric human immunodeficiency virus type 1/type 2 reverse transcriptases display reversed sensitivity to nonnucleoside analog inhibitors. *Proc. Natl. Acad. Sci. U.S.A.* 1991, 88, 9878-9882.
- 1991, 88, 9878-9882.
  (40) Warren, T. C.; Miglietta, J. J.; Shrutkowski, A.; Rose, J. M.; Rogers, S. L.; Lubbe, K.; Shih, C.-K.; Caviness, G. O.; Ingraham, R.; Palladino, D. E. H.; David, E.; Chow, G. C.; Koop, E. B.; Cohen, K. A.; Glinski, J. A.; Farina, P. F.; Grob, P. M. Comparative purification of recombinant HIV-1 and HIV-2 reverse transcriptase: preparation of heterodimeric enzyme devoid of unprocessed gene product. Protein Expression Purif. 1992, 3, 479-487.
- (41) Compound 15 was synthesized in a manner analogous to that described in detail for 14; see ref 24.

JM950468Q